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Abstract

Current machine learning systems operate, almost exclusively, in a purely statistical mode,
which puts severe theoretical limits on their performance. We consider the feasibility of lever-
aging counterfactual reasoning in machine learning tasks, and to identify areas where such
reasoning could lead to major breakthroughs in machine learning applications.

Scientific Background

If we examine the information that drives machine learning today, we find that it is almost entirely
statistical. In other words, learning machines improve their performance by optimizing parameters
over a stream of sensory inputs received from the environment. It is a slow process, analogous
in many respects to the evolutionary survival-of-the-fittest process that explains how species like
eagles and snakes have developed superb vision systems over millions of years. It cannot explain
however the super-evolutionary process that enabled humans to build eyeglasses and telescopes
over barely one thousand years. What humans possessed that other species lacked was a mental
representation, a blue-print of their environment which they could manipulate at will to imagine
alternative hypothetical environments for planning and learning. Anthropologists like N. Harari,
and S. Mithen are in general agreement that the decisive ingredient that gave our homo sapiens
ancestors the ability to achieve global dominion, about 40,000 years ago, was their ability to sketch
and store a representation of their environment, interrogate that representation, distort it by mental
acts of imagination and finally answer “What if?” kind of questions. Examples are interventional
questions: “What if I act?” and retrospective or explanatory questions: “What if I had acted
differently?” No learning machine in operation today can answer such questions about actions not
taken before. Moreover, most learning machine today do not utilize a representation from which
such questions can be answered.

We postulate that the major impediment to achieving accelerated learning speeds as well as
human level performance can be overcome by removing these barriers and equipping learning
machines with causal reasoning tools. This postulate would have been speculative twenty years
ago, prior to the mathematization of counterfactuals. Not so today. Advances in graphical and
structural models have made counterfactuals computationally manageable and thus rendered meta-
statistical learning worthy of serious exploration. The next section summarizes these advances and
explains how barriers to counterfactual thinking can be removed.
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Level Typical Typical Questions Examples
(Symbol) Activity
1. Association
P (y|x)

Seeing What is?
How would seeing X
change my belief inY ?

What does a symptom tell
me about a disease?
What does a survey tell us
about the election results?

2. Intervention
P (y|do(x), z)

Doing What if?
What if I do X?

What if I take aspirin, will
my headache be cured?
What if we ban cigarettes?

3. Counterfactuals
P (yx|x′, y′)

Imagining,
Retrospection

Why?
Was it X that caused Y ?
What if I had acted
differently?

Was it the aspirin that
stopped my headache?
Would Kennedy be alive
had Oswald not shot him?
What if I had not been
smoking the past 2 years?

Figure 1: The ladder of causation

The Three Layer Causal Hierarchy

An extremely useful insight unveiled by the logic of causal reasoning is the existence of a sharp
classification of causal information, in terms of the kind of questions that each class is capable
of answering. The classification forms a 3-level hierarchy in the sense that questions at level i
(i = 1, 2, 3) can only be answered if information from level j (j ≥ i) is available.

Figure 1 shows the 3-level hierarchy, together with the characteristic questions that can be an-
swered at each level. The levels are titled 1. Association, 2. Intervention, and 3. Counterfactual.
The names of these layers were chosen to emphasize their usage. We call the first level Associ-
ation, because it invokes purely statistical relationships, defined by the naked data. For instance,
observing a customer who buys toothpaste makes it more likely that he/she buys floss; such asso-
ciation can be inferred directly from the observed data using conditional expectation. Questions at
this layer, because they require no causal information, are placed at the bottom level on the hier-
archy. The second level, Intervention, ranks higher than Association because it involves not just
seeing what is, but changing what we see. A typical question at this level would be: What happens
if we double the price? Such questions cannot be answered from sales data alone, because they
involve a change in customers behavior, in reaction to the new pricing. Customer choices under the
new price structure may differ substantially from that prevailing in the past. Finally, the top level
is called Counterfactuals, a term that goes back to the philosophers David Hume and John Stewart
Mill, and which has been given structural semantics in the SCM framework. A typical question in
the counterfactual category is “What if I were to act differently,” thus necessitating retrospective
reasoning.

Counterfactuals are placed at the top of the hierarchy because they subsume interventional and
associational questions. If we have a model that can answer counterfactual queries, we can also
answer questions about interventions and observations. For example, the interventional question,
What will happen if we double the price? can be answered by asking the counterfactual question:
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What would happen had the price been twice its current value? Likewise, associational questions
can be answered once we can answer interventional questions; we simply ignore the action part
and let observations take over. The translation does not work in the opposite direction. Interven-
tional questions cannot be answered from purely observational information (i.e., from statistical
data alone). No counterfactual question involving retrospection can be answered from purely in-
terventional information, such as that acquired from controlled experiments; we cannot re-run an
experiment on subjects who were treated with a drug and see how they behave had then not given
the drug. The hierarchy is therefore directional, with the top level being the most powerful one.

Counterfactuals are the building blocks of scientific thinking as well as legal and moral rea-
soning. In civil court, for example, the defendant is considered to be the cause of an injury to the
plaintiff if, but for the defendant’s action, it is more likely than not that the injury would not have
occurred. The computational meaning of but for calls for comparing the real world to an alternative
world in which the defendant action did not take place.

Each layer in the hierarchy has a syntactic signature that characterizes the the sentences admit-
ted into that layer. For example, the association layer is characterized by conditional probability
sentences, e.g., P (y|x) = p stating that: the probability of event Y = y given that we observed
event X = x is equal to p. In large systems, such evidential sentences can be computed efficiently
using Bayesian Networks, or any of the graphical models that support deep-learning systems.

At the interventional layer we find sentences of the type P (y|do(x), z), which denotes “The
probability of event Y = y given that we intervene and set the value of X to x and subsequently
observe event Z = z. Such expressions can be estimated experimentally from randomized trials or
analytically using Causal Bayesian Networks (Pearl, 2000, Chapter 1).

Finally, at the counterfactual level, we have expressions of the type P (yx|x′, y′) which stand
for “The probability of event Y = y had X been x, given that we actually observed X to be x′ and
and Y to be y′. Such sentences can be computed only when we possess functional or Structural
Equation models, or properties of such models.

This hierarchy, and the formal restrictions it entails, explains why statistics-based machine
learning systems are prevented from reasoning about actions, experiments and explanations. It
also suggests what external information need to be provided to, or assumed by, a learning system,
and in what format, in order to circumvent those restrictions.

A Proposed Counterfactual Approach to Adaptive Decision Making

Consider the instruction: “You should have acted differently,” in the context of an agent who is
optimizing an action strategy. Most children learn to improve behavior by responding to such
instructions, be they from parents, teachers, coaches, or reflections upon one’s own experience.
The information value of such instructions may encapsulate hours of trial and error learning. Yet
to parse this instruction, an agent must possess the tools of counterfactual reasoning which are
absent from current day learning machines. The interpretation of this instruction reads: “You have
acted X = x, your outcome was Y = y, but, had you acted differently, say X = x′, your outcome
would have been better, perhaps Y = y′.” Formally, we can write this sentence as

X = x and Y = y =⇒ Yx′ = y′

3



or, in probabilistic terms:
P (Yx′ = y′|X = x, Y = y) = high

The information provided by the conditioning events: X = x and Y = y is extremely important,
since it is this information which is specific to the agent, and carries a summary of the agent’s
motivation, response pattern and other idiosyncratic yet otherwise unobserved features of the agent.

Counterfactual sentences of these type have been thoroughly analyzed within the SCM frame-
work, and we now understand fairly well the conditions under which they can be estimated from
data, both experimental and observational. A simpler version of this sentence, called the Effect of
Treatment on the Treated (ETT) has attained significant attention in economics and epidemiology
and reads:

ETT = E(Yx′ |X = x)

For example, in job training context, ETT describes the effect of treatment (training program)
on those chosen to enroll in the program, or, more precisely, the expected earning (Y ) of those
enrolled and trained, had they not been trained. Clearly, ETT is more informative measure of the
effectiveness of the program than the Average Treatment Effect (ATE) which compares the earning
Y of those trained to the average earning over the entire untrained population. ETT focuses on the
specific constituency enrolled in the program, and this consistency may not resemble the entire
population. It may consist, to take an extreme case, of those who are guaranteed high earning with
or without training.

In the context of individual decision making, ETT would capture an agent saying: “I am about
to act X = x, what if I change my mind and act X = x′ instead?” Clearly, this situation is ubiqui-
tous in many decision situations, especially those where the agent is a learning mood. Again, the
agent’s intent, X = x, carries important information about the agent’s specific characteristics, and
should not be ignored. For example, an agent saying: “I am about to check into the hospital, should
I?” is likely to have different medical urgency than one chosen at random from the population.

These considerations lead to the conclusion that, in personal decision making, the proper objec-
tive function should be ETT, not ATE. In other words, actions should be chosen so as to maximize
ETT = E(Yx′|X = x) over all actions X = x′, rather than maximizing ATE = E(Y |do(x′)) as
is done in the standard literature.

To test these ideas Bareinboim, Forney, and Pearl (2015) incorporated the ETT metric in the
context of the Multi-Armed Bandit (MAB) problem, which is serving as the prototypical paradigm
for active machine learning. In this context, an agent attempts to play a slot machine not knowing
the expected payoff of each of the available machines in the casino. Thus, the agent must balance
his need to learn which machine would deliver the highest payoff with his need to exploit the payoff
information available at any given time. (Exploration vs. exploitation tradeoff). The standard
metric for choice in this context is ATE, and it is estimated by randomization. In other words,
the agent, at any given moment, chooses a machine x′ that maximizes his average reward Y as
determined by an experiment in which machines were chosen at random from those available
at the casino. When the ATE metric was replaced with ETT, the agent was allowed to explore
machines by any strategy whatsoever, but when it came to optimization, the criterion was ETT,
not ATE. As expected, simulation results showed a marked improvement in both performance and
speed of convergence (Bareinboim et al., 2015).
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But how can ETT be estimated from the available data collected? Fortunately, the structural
framework identifies precisely the conditions under which ETT is estimable from a combination of
observational and experimental data (Shpitser and Pearl, 2009). Most of those conditions require
some knowledge of the model, with the exception of one: when the action is binary (corresponding
to two slot machines). Moreover, in the case of non-binary action, the MAB setting permits us
to conduct a post-intention randomization, namely, the agent records his/her choice of machine,
pauses, conducts a randomized experiment and, then, implements an ETT-optima action which
may be different from the one intended. In this way, a database is created in which the intent and
the action selected may be different. This in turn allows us to choose, at any given point, an action
which maximized the expected reward conditional on the current intent. We call this strategy
“intent-specific optimization,” and use it to demonstrate the merit of leveraging the agent’s intent
as a source of useful information.

Of course, intent carries valuable information only when it reflects unobserved confounders
that influenced the agent’s choices in the past and that were not recorded. We conjecture that such
unobserved confounders are ubiquitous in most decision situations.

However, the value of intent-base optimization goes beyond its success in the multi-bandit
problem. It contains, we believe, the key by which counterfactual information can be extracted out
of experiments. The key is to have agents who pause, deliberate, and then act, possibly contrary to
their original intent. The ability to record the discrepancy between outcomes resulting from enact-
ing one’s intent and those resulting from acting after a deliberative pause, provides the information
that renders counterfactuals estimable. It is this information that enables us to cross the barrier
between layer 2 and layer 3 of the causal hierarchy. Such ability is not unique to multi bandit
problems. Every child undergoes experiences where he/she pauses and thinks: Can I do better?
If mental records are kept of those experiences, we have experimental semantic to counterfactual
thinking in the form of regret sentences “I could have done better.” The practical implications of
this new semantics is worth exploring.
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