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Over the last decade, a normative framework for making causal inferences, Bayesian Probabilistic Causal
Networks, has come to dominate psychological studies of inference based on causal relationships. The
following causal networks—[X—Y—Z, X<—Y—Z, X—Y<—Z]—supply answers for questions like, “Sup-
pose both X and Y occur, what is the probability Z occurs?”” or “Suppose you intervene and make Y occur,
what is the probability Z occurs?” In this review, we provide a tutorial for how normatively to calculate
these inferences. Then, we systematically detail the results of behavioral studies comparing human
qualitative and quantitative judgments to the normative calculations for many network structures and for
several types of inferences on those networks. Overall, when the normative calculations imply that an
inference should increase, judgments usually go up; when calculations imply a decrease, judgments
usually go down. However, 2 systematic deviations appear. First, people’s inferences violate the Markov
assumption. For example, when inferring Z from the structure X—Y—Z, people think that X is relevant
even when Y completely mediates the relationship between X and Z. Second, even when people’s
inferences are directionally consistent with the normative calculations, they are often not as sensitive to
the parameters and the structure of the network as they should be. We conclude with a discussion of

productive directions for future research.
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Most human judgments under uncertainty involve reasoning
about causal relationships. For example, a physician tries to infer
which disease is the most likely cause of a patient’s symptoms
(effects). Then, the physician intervenes to alleviate the symptoms
by changing the causal dynamics within the patient. Or a corn
futures trader forecasts the price of corn by considering the con-
sequences of various possible economic and geopolitical events
(e.g., Will a change in China’s trade policy influence the value of
corn in North America?). And, more personally, one commits to an
exercise and diet plan because one believes that the program will
produce specific health benefits.

However, until recently, the role of causal reasoning in judg-
ments under uncertainty has been neglected in psychological re-
search. One reason for this neglect has been the lack of a good
normative model for the reasoning process that underlies even
simple everyday causal inferences, such as in the examples above.
In the past 10 years, there has been a paradigm shift in behavioral
research on causal inference. The shift has been driven by the
dissemination of the Bayesian Probabilistic Causal Network ap-
proach to modeling causality (henceforth referred to as “causal
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networks”). This approach provides prescriptions for rational cal-
culations for inferences on causal networks. The approach has its
roots in theoretical articles by Pearl (1988, 2000), Lauritzen and
Spiegelhalter (1988), and Spirtes, Glymour, and Scheines (1993)
in mathematics and statistics. It has been communicated to behav-
ioral scientists in books by Glymour (2001) and Sloman (2005), as
well as articles by many other researchers (Danks, 2009; Gopnik et
al., 2004; Rehder & Hastie, 2001; Steyvers et al., 2003; Wald-
mann, 1996; Waldmann & Martignon, 1998).

Our focus here is on deliberate and partly conscious reasoning
about causal beliefs. For example, when our car fails to start one
morning, we engage in a deliberate, partly verbalizable sequence
of inferences based on our beliefs about what is causing what
within the car and its immediate environment: Could something
about the weather—recent rainfall—have interfered with the nor-
mal sequence of events that occur after we turn the ignition key?
Or could the gas tank be empty, the battery be dead, a fuse blown,
or a wire chewed through by a squirrel? Here we start from a single
fact or set of facts (the car won’t start, and it rained last night) and
then reason within a system of beliefs (about how the car works)
to update our beliefs about the world (rain probably caused a
short). Our focus here is not on how we obtain knowledge about
how the car works but rather on how we make inferences or
judgments about the car given our knowledge of how the car
works.

Introduction to Causal Networks

Throughout this article we refer to a stylized example about
farming represented in Figure 1. Imagine a farmer who grows
cantaloupes and tomatoes. Both cantaloupes and tomatoes are
damaged by an early frost (F); they are effects of a common cause.
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Early Tomato
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Figure 1. Farming scenario.

In addition, the tomato harvest (7) is hurt by the tomato fruitworm
(W); however, this pest does not affect the cantaloupe harvest (C).
Finally, if a farmer has a poor tomato harvest, then he or she is
likely to reap a small profit from the tomatoes (P).

The graph in Figure 1 conveys the structure of the causal
relationships. The nodes represent variables that can take on mul-
tiple values. For example, uppercase F represents whether there
was an early frost or not. Lowercase represents the state of the
node; f = 1 denotes that there was an early frost, and f = 0 denotes
that there was not. The causal relationships are represented by
arrows (or “edges”) between the nodes.

A fully realized causal network also contains parameters. “Base
rate” parameters capture the probability of exogenous nodes, P(F)
and P(W), which do not have any explicitly represented causes.
“Strength” parameters model how likely each cause is to generate
or inhibit each of its effects. When multiple causes influence the
same effect (such as F and W on 7), a function must be identified
to describe how these causes combine to produce the effect.

Once we know the structure and parameters, the normative
theory of graphical causal models prescribes how one should infer
the state of one variable given the state of another. For example,
suppose we learn that a farm had a tomato fruitworm infestation.
We would infer that the farm probably had a poor tomato harvest,
but we would not rationally infer anything about the cantaloupe
harvest. This sort of inference is often called an inference from an
observation; we observe the state of one variable and then infer
another. We also discuss inferences from interventions, when we
manipulate the state of one variable and then infer the state of
another (e.g., if we spray the tomatoes with a pesticide to prevent
a fruitworm infestation and then infer the tomato harvest). We also
consider reasoning about counterfactuals such as “What would the
profit from tomatoes have been had the tomato fruitworm infes-
tation not occurred?” All of these questions can be interpreted as
inferences on the causal network in Figure 1.

So, what makes a graph and parameters of this type a causal
network rather than merely a “probability graph™? It is simply the
interpretation of the graph. If the graph is defined as representing
causal relationships, then it’s a causal graph. However, certain
conventions of these networks convey a distinctly causal interpre-
tation. These include (a) the interpretation of arrows as indicating
temporal ordering on the variables, (b) the assumption that inter-
ventions on the value of one node will be propagated only “down-
stream” to future states of other nodes, and (c) the presumption that
counterfactual inferences can be made about “what would have
happened” if the states of nodes had been otherwise than what they

in fact were. In sum, the causal interpretation of these graphs
comes from how they are used and what they represent, not from
the probability calculus itself.

Three Steps of Causal Inference

To clarify our focus, we distinguish three steps of causal infer-
ence: (a) learning the structure of the causal network, (b) learning
the parameters, and (c) making a judgment about one node given
our knowledge about the other nodes. Our review focuses on
making judgments. However, all of the behavioral experiments
“teach” the structure and parameters to the human research par-
ticipants in some manner. Because learning the structure and
parameters conceptually precedes making judgments, we provide a
brief overview of these prior types of learning.

Learning the structure of a causal network (i.e., which variables
cause which other variables) often occurs through explicit teaching
(e.g., in a biology class or reading The Economist) and deducing
plausible causal pathways based on mechanistic hypotheses (e.g.,
rain water could have caused a short in the car ignition system).
Additionally, much of the recent research on “causal learning” has
focused on how people learn causal structures from experience
(e.g., Gopnik et al., 2004; Lagnado & Sloman, 2004, 2006; Rott-
man & Keil, 2012; Steyvers et al., 2003; see Lagnado, Waldmann,
Hagmayer, & Sloman, 2007, for a summary). For example, a
parent might form beliefs about how to raise a well-behaved child
by observing correlations between children’s behaviors and the
behaviors of those children’s parents. Of course, it is notoriously
difficult to learn causal relationships from correlations alone. A
second way to learn causal structures is from “interventions™: A
parent might try various child-rearing habits to see which one
works best. Finally, people also learn causal structures from a
variety of temporal cues. For example, a mother might infer
different causal relationships if she notices that after her son has a
restless night he misbehaves versus the observation that after he
misbehaves he sleeps poorly.

It is still unclear how successful we are at learning causal
structures from experience. Furthermore, we often have beliefs
about what causes what (e.g., rain might have caused an ignition
short in my car) and can make judgments and decisions (e.g., I'll
wait to see if the short is fixed after the water dries) without having
to learn the causal structure through some form of statistical
induction from experience.

The second step is learning the causal strengths, that is, the
degree to which a cause influences each of its effects (see Hattori
& Oaksford, 2007, for a summary of 41 potential models). Studies
investigating learning focus on scenarios when there are one or
more possible causes (A, B, C) of a single effect (E), and the goal
is to learn the strengths of the alternate causes. Often these exper-
iments do not distinguish whether participants learned about
whether the link A—FE exists versus the strength of the link A—E;
thus, experiments about “causal strength learning” and “causal
structure learning” as well as “multiple cue learning” and even
“covariation detection” can overlap.

Earlier literature on causal strength learning often focused on
“irrational” inferences like illusory correlation (e.g., Jenkins &
Ward, 1965) and how strengths could be learned through associa-
tive mechanisms (e.g., Dickinson, Shanks, & Evenden, 1984).
However, the recent trend has been to focus on rational explana-
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tions for patterns in causal strength learning such as conditioning
on alternative causes (e.g., Spellman, 1996; Waldmann, 1996;
Waldmann & Hagmayer, 2001), accounting for ceiling and floor
effects (Cheng, 1997; Novick & Cheng, 2004), understanding the
interaction between whether a link exists and the strength of the
link (Griffiths & Tenenbaum, 2005), and incorporating prior be-
liefs about the likely strength of potential causes (Lu, Yuille,
Liljeholm, Cheng, & Holyoak, 2008).

Regarding the current review, most of the studies that focus on
judgment have simply told experimental participants the causal
structure rather than having them learn it from experience. Partic-
ipants learned the parameters by observing correlations between
causes and effects or from textual descriptions or prior knowledge
(sometimes participants did not have any specific quantitative
knowledge of the parameters). Thus, even in controlled experi-
ments there may be questions about participants’ beliefs about the
causal system (we attend to these issues on a study-by-study basis
in this review). Overall, our focus is on people’s judgments given
their causal belief system.

Simplifications and Limitations of Causal Networks

It is important to keep the nature of the simplifications that are
inherent in the causal network framework clearly in mind, as this
approach to human judgment depends upon accepting that such
simplifications do not drastically distort everyday habits of think-
ing about causal relationships. The causal network framework is
very flexible and can be extended to loosen various assumptions.
However, the standard framework—the one that has been the
primary focus in the causal reasoning literature—makes the fol-
lowing assumptions.

First, the networks we review do not represent any temporal
durations such as the length of delay between a punctate cause and
effect or the timing of a maximum effect (e.g., ibuprofen has its
maximum effect at about 1 hr after ingestion). We note, however
that standard causal networks can be expanded to include temporal
information (e.g., Buchanan & Sobel, 2011; Rottman & Keil,
2012).

Second, the causal networks we review are acyclic; they cannot
have any loops like X—Y—Z—X or “bidirectional” relationships
like X<>Y. In acyclic networks each variable can be represented as
a function of the variables that directly cause it, but if a variable
causes itself then this function is indeterminant. Standard networks
can be “unfolded over time” to account for causal loops (e.g.,
Griffiths & Tenenbaum, 2009; Kim, Luhmann, Pierce, & Ryan,
2009; Rehder & Martin, 2011).

Third, the networks considered in most applications are incom-
plete. Surely there are many variables that could be added that
precede, mediate, and/or follow the variables explicitly repre-
sented in any network (e.g., other causes and effects of tomato
fruitworms or small profits).

Fourth, there are many “zero links” in the network, when in
reality there are small causal influences between relevant causal
events. For example, in a realistic economic context, the canta-
loupe harvest probably has an impact on the market price of
tomatoes, but this influence is ignored in the Farming Scenario.
This sparseness is also typical of all the relevant behavioral re-
search.

Fifth, an essential property of causal networks is the Markov
Assumption. In reference to Figure 1, this assumption says that
when the state of 7 is known, and we infer P, F' does not provide
any additional information about P. In other words, T completely
mediates the relationship from F to P. The Markov assumption
greatly simplifies normative causal inference because it identifies
variables that can be ignored for certain inferences. The Markov
assumption cannot be relaxed or abandoned.

These limitations have led some philosophers and mathemati-
cians to conclude that the entire enterprise of modeling realistic
situations with such graphs is futile (e.g., Cartwright, 1999, 2001,
2002; see also articles in Gelman & Meng, 2004). We still believe
that the approach helps us understand real causal systems and how
ordinary people think about causality. But not all readers will
agree, and we want to be clear about the strong assumptions
required to believe that Causal Networks provide a useful tool for
understanding causal cognition.

Simplifications and Limitations of Psychological
Research on Causal Networks

In addition to the limitations and simplifications of the norma-
tive causal network approach, there are additional simplifications
in the ways that causal inference is typically studied in psychology
experiments. First, although the variables in the example network
could be continuous, ordinal, or categorical, the majority of be-
havioral research has focused on binary causes and effects (e.g.,
the tomato harvest was good or poor, not number of tons of
tomatoes harvested). Second, although each causal relationship
could be generative or inhibitory, most of the existing research has
focused on generative links. In the farming example we repre-
sented Early Frost as causing a Poor Tomato Harvest, not prevent-
ing a Good Tomato Harvest.

Third, when two or more causes influence one effect, the causes
can potentially combine in many different ways. For example,
when causes are multivalued, they could produce the effect addi-
tively, multiplicatively, or with any other function (Waldmann,
2007). However, most research (which has focused on indepen-
dent, generative, binary causes) has assumed a particular “func-
tional form” called the “Noisy-OR gate” (e.g., Cheng, 1997; Grif-
fiths & Tenenbaum, 2005; Novick & Cheng, 2004; Pearl, 1988;
see Yuille & Lu, 2008, for other functional forms). For example,
one might believe that the probability of a poor tomato harvest is
determined by the union (as opposed to the intersection, or some
other function) of a frost or an infestation that successfully causes
a poor tomato harvest.

Plan for This Review

Our focus is on how people make inferences and whether their
inferences agree with the normative calculations on causal net-
works. We first discuss whether people’s inferences follow the
Markov Assumption, which simplifies reasoning by identifying
which nodes are relevant for making a particular inference. The
rest of the article focuses on how people make use of the param-
eters of the causal structures. We look at whether people’s infer-
ences go in the predicted directions, as well as how close people’s
inferences come to the normative calculations. We analyze these
questions for a variety of different types of paradigmatic causal
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structures including chains, common cause structures, one-link
structures, common effect structures, and diamond structures.

We finish by making some observations about the quality of
human reasoning about causal relationships. To foreshadow our
conclusions, many aspects of human reasoning about causal sys-
tems reflect the qualitative prescriptions of the normative model.
When the calculations imply the probability of an event should
increase, usually judgments go up; when they imply a decrease,
they go down. But, there are some reliable anomalies. In particular,
people seem not to respect the Markov Assumption, and their
inferences tend to be weaker than would be implied by the nor-
mative model. We also comment on the value of comparing
behavioral results to a normative model. Among other reasons, we
submit that the comparison is useful because it identifies potential
pitfalls for human reasoning about practical matters.

The Markov Assumption

The Markov Assumption identifies which nodes are relevant to
an inference and which nodes are irrelevant. Consider the chain in
Figure 2, which is a subgraph from Figure 1. Suppose that we are
trying to infer whether there will be a large or small profit from
tomatoes this year. If we know that there was an early frost, we
would be likely to infer a poor tomato harvest and thus a small
profit. The probability of p = 1 is higher given that f = 1 than
givenf=0; P(p = 1If = 1) > P(p = 1If = 0).

However, suppose that we already know that there was a poor
tomato harvest (r = 1) and later learn that it was caused by an early
frost (f = 1). Given the poor tomato harvest we would already have
inferred that there is likely to be a small profit from tomatoes, and
learning that there was or was not an early frost does not change
the inference about the tomato profit: P(p = 1l = 1) = P(p =
llt=1f=1) = P(p = llt = 1f = 0). F is irrelevant to P once
T is known. The technical term for this relationship is that early
frost and small profit from tomatoes are “d-separated” by poor
tomato harvest; profit is no longer dependent on frost once the
mediator (poor harvest) is known. These inference patterns are
symmetric. For F—T—P, once T is known, learning the state of P
does not affect the inference of F.

More generally, the Markov Assumption states that a given
node, conditional on all its direct causes, is statistically indepen-
dent of all other nodes that are not its direct or indirect effects. (See
Charniak, 1991, and Sloman, 2005, for gentle introductions to

causal graphical models, and Jensen & Nielsen, 2007, for a more
technical introduction.) The Markov Assumption becomes even
more useful in structures with large numbers of variables because
the Markov Assumption may be able to label many of them as
irrelevant for a given inference.

The common cause graph works much like the chain. If we find
out that there was a poor tomato harvest, we might infer that there
was an early frost and thus that there was also a poor cantaloupe
harvest. However, if we already know that there was an early frost,
then we would predict that there was a poor cantaloupe harvest
regardless of whether there was a poor tomato harvest or not.

For the common effect structure, neither F' nor W have any
direct causes in the network, so they are unconditionally indepen-
dent. Just because there was an early frost does not mean that there
was a fruitworm infestation, or vice versa. (In some modeling
applications exogenous causes like F and W are not necessarily
assumed to be independent.)

Evidence of the Use of the Markov Assumption
for Inferences

The Markov Assumption identifies which variables can be ig-
nored for particular inferences, simplifying the inference process.
Rehder and Burnett (2005) provided the first comprehensive test of
the Markov Assumption. Here is an example of one scenario they
used involving a causal chain. Participants learned about Kehoe
ants, which typically have blood high in iron sulfate, which causes
a hyperactive immune system, which causes thick blood, which
causes them to build nests quickly [[—S—T—Q], but participants
were not given the specific parameters of the causal model. Par-
ticipants were then presented with an ant with certain features such
as[s = 1,1 =1, g = 0] and were asked to infer the probability of
1. Whether T and Q are 1 or 0 should not affect the inference of /
because S is known to be 1.

Rehder and Burnett (2005) found that participants systemati-
cally violated the Markov Assumption. Throughout the article, we
use C to refer to an exogenous cause (a factor that does not have
any known causes in the network), M to refer to a mediator, and £
to refer to an effect (a node that does not cause any other nodes in
the network). For the chain structure (see Figure 3), even when
they knew the state of M,, if M, and E were present, then they
were more likely to infer that C was present. There were analogous
effects for inferring E. For the common cause, even if they knew

Chain Common Cause Common Effect
Early Early Early Tomato
Frost (F) Frost (F) Frost (F) Fruitworm (W)
Poor Tomato Poor Cantaloupe Poor Tomato Poor Tomato
Harvest (T) Harvest (C) Harvest (T) Harvest (T)

Small Profit from
Tomatoes (P)

Figure 2.

Three prototype causal networks embedded in the farming scenario.
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Figure 3. Causal structures investigated by Rehder and Burnett (2005). C = an exogenous cause (a factor that
does not have any known causes in the network); M = a mediator; E = an effect (a node that does not cause

any other nodes in the network).

the state of C, the states of E, and E; influenced participants’
inferences of E,. For the common effect structure, if C, and C,
were present (and the state of E was unknown), participants were
more likely to infer that C, was present.

In order to account for these violations of the Markov Assump-
tion, Rehder and Burnett (2005) suggested that their participants
inferred that there was another feature, an unobserved “mecha-
nism” that was a direct cause of all other features, somewhat like
a category essence (see Figure 3, bottom row). With the unob-
served mechanisms, all the features that were previously indepen-
dent are dependent because they are common effects of the unob-
served mechanism. For example, in the chain structure, even when
the state of M, is known, if M, is present then the mechanism is
more likely to be present, and thus C is more likely to be present.

Explaining this violation of the Markov rule by assuming par-
ticipants had “imported” an unobserved cause into their mental
representations leaves some open questions. First of all, there is no
direct evidence that people believe in this unobserved mechanism.
For the case of living kinds, it is plausible to hypothesize factors
like DNA that might serve as underlying causes of many causal
features. But Rehder and Burnett (2005) also used other categories
such as Romanian cars (with features such as butane laden gas and
loose fuel filter gaskets). In one experiment they even used “skel-
etal” categories called “Daxes,” and the four features were simply
labeled A, B, C, and D with no additional meaning. It is unclear
what sort of unobserved mechanism could be posited in these
cases. Furthermore, Rehder (2006) replicated these results in sce-
narios that did not involve categories (e.g., low interest rate —
small trade deficit — high retirement savings) as well as with a
completely abstract domain (e.g., Variable A — Variable B —
Variable C). These experiments suggest that even if the Markov
violations can be modeled by adding an unobserved common
cause to the structure, it is not obvious why people would assume
such a node.

In order to eliminate the unobserved category “mechanism” as a
possible explanation for the Markov violations, Rehder (2012)
used nodes labeled as causes and effects that were not features of

a category (e.g., urbanization causes socioeconomic mobility).
Rehder (2012) also wondered if people were inferring other direct
causal relationships between the variables based on their prior
knowledge, which could lead to apparent violations of the Markov
Assumption. Thus, he also counterbalanced the nodes in a way
such that systematically inferring additional links between the
nodes would not lead to violations of the Markov Assumption.
Yet, he still found persistent violations.

Rehder (2012) also tested the effects of deliberative reasoning
versus more intuitive judgments. In one condition he required
participants to respond to the inference questions in under 10 s, and
in another he asked them to justify their inferences. There was no
consistent effect of the justification or speeded manipulations; if
anything, it appeared that justification led to more Markov viola-
tions. This pattern of findings suggests that Markov violations are
not merely due to a quick intuitive judgment such as associative
reasoning.

Burnett (2004) conducted a number of similar experiments and
also found significant violations of the Markov Assumption. In
addition, he found evidence that people’s inferences fit a proximity
heuristic: nodes that are closer to the inferred node are weighted
more, even when an intermediate node is known. For example, in
the chain C—M,—M,—E, when inferring C and the state of M, is
known, the state of M, has a larger impact on C than does the state
of E.

Mayrhofer et al. (2010) tested the Markov assumption in a task
in which aliens read the minds of other aliens (see the following
section for more details about this study). One condition involved
a chain C—M,—M,—E, such that Alien E read the mind of Alien
M., who read the mind of M,, who read the mind of C. Participants
inferred that Alien E’s thoughts were almost entirely dependent
upon M, (and very weakly dependent upon C and M,). This
particular domain and chain structure (essentially the “telephone
game”) seems to emphasize to participants that only the direct
cause is relevant for any given inference.

Finally, Sussman and Oppenheimer (2011) conducted a study in
which they told participants causal relationships between three
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fictitious plumbing devices. On each trial, participants were told
integer values of two of the devices, and their task was to estimate
the value of the third. They found that both for chains and common
cause structures, people showed small and probably nonsignificant
violations of the Markov Assumption.

In sum, many studies using a variety of materials have demon-
strated that people violate the Markov Assumption. However, the
authors of these reports believed that it was plausible that partic-
ipants imagined an additional unobserved variable that was a
common cause or inhibitor of the observed variables. Burnett
(2004) even called violations of the Markov Assumption “adap-
tive” if people believed that there are additional causal relation-
ships aside from those specified by the experimenter. Rehder and
Burnett (2005) also pointed out that the Markov Assumption could
appear to be violated if people treat all the observed variables as
imperfect observations. This means that in realistic scenarios it is
very difficult to rule out all rational explanations for “apparent”
violations of the Markov Assumption.

At the same time, a number of studies have used scenarios in
which there is no compelling reason why people would infer
additional causal links. It is also notable that the Markov violations
always seem to be “positive.” For A—B—C, people essentially
infer an additional positive correlation between A and C above and
beyond the correlation implied by B. If people were really inferring
additional unobserved links, it is unclear why these links would
overwhelmingly be positive. Thus, some of these inferences seem
to be true violations of the Markov Assumption in that there is no
plausible adaptive reason for inferring an unobserved common
cause given the particular cover story. We summarize the results of
this section in Figure 4 and use the same notation presented in the

key of Figure 4 throughout the remainder of this review. Bold
represents nodes that are being inferred. Normal weight represents
nodes with known states (0 or 1). Dashed lines represent nodes
with unknown states. Octagons (stop sign) represent nodes that are
used even though they should be ignored for the given inference.

Reasoning About Plausible Unobserved Links on
Common Cause Structures [E,;<—C—FE,]

So far we have framed the Markov Assumption as being nor-
mative. We have discussed some potential explanations for appar-
ent violations of the Markov Assumption. However, in all the
previous scenarios, if people had actually inferred additional un-
observed links they were doing so without good reasons. In the
current section, we discuss some situations in which people seem
to adeptly reason about the scenario to infer plausible unobserved
links.

In a standard common cause structure, E,<—C—FE,, we can
conceive of the two effects as having additional independent
unobserved influences (see the Us in Figure 5a). Though Figure Sa
is the standard way to interpret common effect structures when we
have no additional information, there are some situations in which
we might believe that the effects would be correlated above and
beyond what would be implied by C alone. Figures 5b and c
represent two such structures (see also the Feature Uncertainty
Model in Rehder & Burnett, 2005).

Mayrhofer et al. (2010) investigated a social transmission sce-
nario and found that describing the nodes as either active or
passive moderated whether people interpreted the structure as
having independent versus correlated errors. They used a cover

® ®
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Even when the
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Figure 4.  Summary of Markov assumption violations. Bold represents nodes that are being inferred. Normal
weight represents nodes with known states (0 or 1). Dashed lines represent nodes with unknown states. Octagons
(stop sign) represent nodes that are used even though they should be ignored for the given inference. C = an
exogenous cause (a factor that does not have any known causes in the network); M = a mediator; E = an effect
(a node that does not cause any other nodes in the network).
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Figure 5.
unobserved influences.

story about four telepathic aliens who could transfer their thoughts
(either “por” = 1 or “tus” = 0) through mind reading. In the
“active” condition, one alien (cause; C) was described as sending
his thoughts to the effect aliens (Es). Participants inferred P(e, =
lle = 1,e, = 1) > P(e, = llc = 1,e; = 0). When C was described
as the agent “sending” the message to E, and E,, one could
plausibly reason that something could cause an error in the trans-
mission of the message to both E, and E, (e.g., Alien C wasn’t
concentrating hard enough). This “sending” condition seems to
imply correlated errors (e.g., Figure 5b or c). In contrast, when the
effect aliens were described as passively “reading” the mind of
Alien C, there was a smaller difference between P(e, = llc =
l,e, = 1) and P(e, = llc = l,e; = 0). A plausible reason is that
if one effect alien misread the message, it should not have an
impact on another alien’s ability to read the message, with inde-
pendent errors like as depicted in Figure Sa.

Mayrhofer, Goodman, Waldmann, and Tenenbaum (2008) in-
vestigated another aspect of a causal scenario likely to convey
beliefs in unobserved correlated errors. They used the same alien
cover story, but now there were two different types of effect aliens,
green and yellow. When one yellow alien misread the message
people tended to infer that another yellow alien would also misread
the message, but whether the green aliens correctly read the
message did not matter for inferring whether a yellow alien would
correctly read the message. This pattern can be interpreted as
indirect evidence for two sets of correlated errors for the two types
of aliens.

Walsh and Sloman (2004, 2007) also investigated rational ex-
planations for correlations between effects of a common cause
above and beyond the correlation implied by the cause. They used
realistic common cause scenarios (e.g., jogging causes increased
fitness level and weight loss). When told that Tim did not lose
weight, people often came up with explanations that were common
causes or disablers of both effects (e.g., jogging increased Tim’s
appetite, which caused him not to lose weight and prevented his
fitness level from increasing).

In sum, the studies in this section have identified a number of
scenarios for which it seems reasonable for people to use their own
prior knowledge or information conveyed in the description of the
scenario to infer structures with correlated errors. However, the
fact that inferring such correlated errors was to be expected in
these studies does not diminish the fact that in the studies in the
previous section there was no similar reason to infer correlated

b) Common Cause
with Correlated Errors

c) Common Cause with
Unobserved Mediator

/

A
& B

Independent versus correlated errors on a common cause network. Dashed U nodes represent

errors and thus no compelling reason to believe that the Markov
Assumption did not hold.

Beliefs About Whether the Causes in a Common
Effect Structure [C,—E<—C,] Are Correlated

For common effect structures, C,—E<—C,, the strict interpreta-
tion of the Markov Assumption implies that the two exogenous
causes, C; and C,, are independent from each other. Yet in
practice, statistical causal modelers (e.g., LISREL) often allow for
the possibility that they are correlated. For example, imagine an
economist considering three economic indexes postulated to have
the following structure: /,—I;<—1I,. The modeler would likely want
to test for the possibility that /, and I, are correlated rather than
just assume that they are independent. In this section we discuss
situations in which people believe that C, and C, are correlated,
exploring how these beliefs are influenced by different types of
experience and whether people’s beliefs are consistent.

As already mentioned, Rehder and Burnett (2005) told partici-
pants a cover story involving a common effect structure
C,—E<C,. The participants treated C, and C, as correlated even
though there was no obvious compelling reason to do so. Von
Sydow, Hagmayer, Meder, and Waldmann (2010; Experiment 2)
told participants the structure C,—FE<—C,. In a set of learning trials
participants observed whether each variable was present or absent;
C, and C, were uncorrelated. Afterward, participants inferred that
C, and C, were independent, P(c, = llc; = 1) = P(c, = llc; =
0). Thus, even if people tend to believe that C, and C, are
correlated, they can fairly quickly learn that that C, and C, are
independent.

Hagmayer and Waldmann (2000) conducted a similar study. On
a given learning trial, however, participants saw either C, and E or
C, and E, so they could not calculate the correlation between C,
and C,. At the end of the learning trials, participants judged P(c, =
lle, = 1) and P(c, = llc, = 0), which were converted into the
correlation measure phi. The correlations in two experiments were
slightly positive (.16 and .24). Perales et al. (2004) conducted a
parallel study. In most conditions, participants inferred correla-
tions close to zero, but in one condition with strong causal rela-
tionships about one third of the participants inferred a substantial
positive correlation.

The assumption that C, and C, are independent is particularly
important for inferring the causal strength of C, on E when C, is
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unobserved (Cheng, 1997). Suppose that C; and E are strongly
correlated. If one believes that there are no other potential causes
of E that are correlated with C,, then one might infer that C, is a
strong cause of E. However, what if one knows that there is
another factor, C,, which causes both C, and E? In this case, it is
possible that C; is not a cause of E at all and the correlation
between C, and E is an artifact of C,. Thus, believing that other
causes of E are independent of C, is critical for inferring the
strength of C;.

Hagmayer and Waldmann (2007) and Luhmann and Ahn
(2007; Experiment 3) examined whether people believe that C,
is independent from an unobserved C,. On each trial people
observed C, and inferred whether C, was present or absent.
Both of these studies found that people judged C, and C, to be
correlated. More importantly, the estimated correlation de-
pended on the learning conditions. In Hagmayer and Waldma-
nn’s (2007) Experiment 1, when the two causes were relatively
weak, people thought that C, and C, were positively correlated;
when they were relatively strong, people thought they were
negatively correlated. But Luhmann and Ahn (Experiment 3)
found a different result: When C, had a positive influence on E,
people inferred a positive correlation, but in the condition in
which C, had zero effect on E, people inferred a negative
correlation. These results are surprising because there is no
normative reason why changing the strengths should lead peo-
ple to change their inferences of the correlation between C, and
C,. Hagmayer and Waldmann (2007) also asked people to make
summary judgments of P(c, = 1llc; = 1) and P(c, = llc; = 0)
at the end of the learning trials. Unlike the trial-by-trial judg-
ments, these judgments reflected a belief that C, and C, were
independent. 1t is surprising and unclear why these judgments
were inconsistent.

Until now we hedged about what people should infer about
the correlation between C, and C,, proposing that people’s
inferences should merely be consistent. However, Hagmayer
and Waldmann (2007, Experiment 2) conducted a study that
normatively implies that C, and C, are independent. On each
trial participants chose whether C, occurred or not and then
inferred whether C, would be present or not. Because partici-
pants chose C, without knowing C, or E,, this intervention
should be interpreted as cutting any links to possible unob-
served common causes. Yet, participants usually inferred that
C, and C, were negatively correlated. In sum, people’s beliefs
about the relationship between C, and C, are inconsistent and
in one instance go against the normative framework.

Summary

The Markov Assumption greatly simplifies learning and rea-
soning with causal networks. However, people appear to be
unaware of the simplicity it affords. When making inferences,
people often use nodes that, according to the Markov Assump-
tion, are irrelevant for the particular inference. Furthermore,
related research outside the focus of this review also shows that
people fail to capitalize on the Markov Assumption when
learning causal networks (Steyvers et al., 2003; Experiment 3;
Fernbach & Sloman, 2009; Jara, Vila, & Maldonado, 2006).

Normative Quantitative Inferences on Graphical
Causal Models

The rest of this review focuses on quantitative inferences people
make based on the structure and parameters of the causal model. In
the following sections, we explain how to simulate the functioning
of a causal network. By understanding how a causal structure
“works,” from causes to effects, it is possible to make inferences—
that is, to deduce the probability of any variable in the network
given information about the states of other variables.

Parameterizing a Structure: Modeling How Causes
Combine to Produce an Effect

The first task required to make quantitative inferences on a
causal network is to model how each individual node is produced
by its direct causes, otherwise known as the “parameterization” of
the model. We start with a one-link structure C—FE. One common
way to conceive of C—F is with an additional alternative unob-
served cause of E, which we call A; C—E<—A. A represents the
“causal background” or the likelihood of other possible factors that
we cannot directly observe generating E (and they are assumed to
be independent of C). A psychological explanation for adding A
into the model is that if E ever occurs without C, then we must
believe that some other cause produced E. We denote the likeli-
hood of A (a = 1) generating E (e = 1), or the “strength” of A as
S A, which equals P(e = llc = 0). (Metaphysically, S, reflects both
the probabilities of all the unobserved causes as well as the
strengths of all these unobserved causes. But because we do not
know specifics about the probabilities and strengths of all these
unobserved causes, we use S, for simplicity.) The two other
parameters of the model are the base rate of C, P(c = 1), and the
strength of C causing E, S. C can cause E only when C is present.

According to this parameterization, E can be produced two
ways: C can produce E, with the probability [P(c = 1)Sc], and A
can produce E with the probability S,. Thus, [1 — P(c = 1)S] is
the probability that C fails to generate E, and [1 — S,] is the
probability that A fails to generate E. Because we are assuming that
C and A are independent, the probability of E occurring is 1 — the
probability that C and A both fail to produce E (the probabilistic
union of either C or A generating E, see Table 1 row 1). This is the
Noisy-OR combination rule for two independent causes (see
Cheng, 1997; Pearl, 1988).

This same logic can be extended to cases with two or more
generative causes, all of which can independently produce E
(Table 1 row 2). To determine the union of any of the three causes
successfully producing E, one can calculate 1 minus the probabil-
ity of all of the generative causes failing to produce e = 1.

What if C inhibits or decreases the probability of E on a C—E
structure? The standard function to represent an inhibitory cause is
called “noisy-And-Not.” A can produce e = 1 with the probability
S- Sc is the probability that C would inhibit e = 1, so (1 — S¢)
is the probability that C fails to inhibit e = 1. Thus, P(e = 1) is the
product of A generating E, and C failing to inhibit £ (row 3 in
Table 1). Rows 4 and 5 show other cases that can be determined
with the same logic (see Novick & Cheng, 2004).

From the formulas in Table 1 it is trivial to calculate conditional
probabilities of E given knowledge of the states of the causes.
When a given cause is known to be present (or absent), P(c = 1)
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Table 1

Probability of an Effect Given Different Combinations of Binary Generative and Inhibitory Causes, Assuming Noisy-Or (Generative)

or Noisy-and-Not (Inhibitory) Functions

Structure

Pl =1)

One generative cause plus A

Two generative causes plus A

One inhibitory cause plus A

Two inhibitory causes plus A

One generative cause (C,) and one inhibitory cause (C,) plus A

1= [1 = S, = Plc = DSc]

1= [1 = S, = Pc, = DS, 11 = Plc; = DSc]
SAll = P(c = DS¢]

SAll = P(c; = DSl = Plc; = DScl

[1 = [1 = Salll = Ple; = DS = Ple; = DSeol

simplifies to 1 (or 0). For example, the following two conditional
probabilities are deduced fromrow 1: Ple = lle =1)=1— (1 —
Sy (I — So) and P(e = lle = 0) = S,. These conditional
probabilities will be used in the next section.

There are other ways that multiple binary causes could influence
an effect. For example, P(e = 1) could be determined by a simple
sum of the strengths of the causes with cutoffs so that P(e = 1)
cannot go above 1 or below 0. Or, analogous to a logistic regres-
sion, P(e = 1) could be determined by an S-shaped function over
the sum of the strengths of the generative and inhibitory causes.
Behavioral research has almost exclusively focused on noisy-OR
and noisy-AND-NOT functions, so we do not consider these other
possibilities any further.

So far we have discussed how to parameterize a structure with
multiple causes of a single effect. To parameterize a larger struc-
ture, each exogenous node needs a parameter to represent its base
rate, and each arrow needs a causal strength parameter. Addition-
ally, if a node ever occurs when its causes are absent, then it also
needs an S, parameter. Figure 6 shows the parameters for five
canonical causal structures.

In sum, this section explains how the conditional probability of
an effect given its causes can be derived from causal strengths
assuming a noisy-OR integration. It is also possible to parameter-
ize a structure at the level of conditional probabilities instead of
going down to causal strengths: C—E would be parameterized by
P(e = 1llc = 1) and P(e = llc = 0). Either parameterization works,
although reasoning with causal strengths provides a deeper level of

analysis and is simpler to represent when there are multiple causes
of a single effect.

From Conditional Probabilities to the Factorization
and Joint Distribution

The previous section explained how to model the probability of
an effect given its direct causes. The second step for representing
a causal structure is the joint probability distribution, the proba-
bility that the variables in the network are each in a particular state.
For the farming example Early Frost (F) — Poor Tomato Harvest
(T), the joint distribution specifies the percentage of farms that
experienced an early frost and a poor tomato harvest, P(f = 1,t =
1), the percentage of farms that experienced an early frost but a
normal tomato harvest P(f = 1, = 0), and so on. Determining the
joint distribution requires applying the “factorization” of the net-
work. The factorization represents the structure of the graph in
terms of conditional probabilities associated with each causal
relationship in the graph. For the C—F structure, the factorization
is simply P(E,C) = P(EIC)P(C). For example, suppose that C is
generative and P(c = .1), S, = .2, and S = .5, and thus P(e =
lle = 0) = .2, and P(e = llc = 1) = .6. Table 2 shows how to
calculate the joint probability distribution for the four joint states
of C and E. The four joint probabilities are mutually exclusive and
exhaustive, so they sum to 1.

For more complicated causal structures, the factorization of the
joint probability distribution works in essentially the same way:

Chain Common Cause One Link Common Effect Diamond
P(c=1) Ple=1) P(c=1) P(c,=1)  P(c,=1) P(c=1)
‘10 /Sm Sat Sgog Sc-g2 Sh2 ‘ii /SA S jiz/SA Sc-m SC—v\MZ
‘1MjA2 Swi-€ ?2—{
@ Joint Probability For Each Causal Structure: @
P(C,M,E)= P(C.E,.Ey)= P(C,E)= P(C,,C,E)= P(C,M,,M,,E)=
P(EIM)P(M C)P(C P(EIC)P(C)
(EIMPMOPC)  pE,Ic)P(E,IC)P(C) (EIC)P(C) P(EIC,,C,)- P(EIM,,M,)P(M,IC)-
P(C,)P(C,) P(M,|C)P(C)

Figure 6. Parameters for five structures.
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Table 2

Joint Probability Table for C—E

Joint probability Factorization
Pc=1le=1) Ple=1lc=1P(c=1)=.6 X.1 =.06
P(c = l,e = 0) Ple=0lc=DPc=1)=.4X%X.1=.04
P(c =0, =1) Ple=1lc=0P(c=0)=.2x.9=.18
P(c = 0,e = 0) P(e = 0lc = 0)P(c =0)=.8X.9=.72

The probabilities of each variable given its direct causes are
multiplied together (and for exogenous variables with no causes in
the network the base rate is used). Figure 6 shows how to calculate
the joint probability for five canonical causal structures.

Marginal Probabilities

Whereas a joint probability is the probability of all the nodes in
a network assuming a specific set of states, a marginal probability
is the probability of a subset of the nodes in the structure assuming
a specific set of states. For example, on the C—F structure, one
might want to know P(e = 1). P(e = 1) can be calculated by
summing P(c = l,e = 1) and P(c = 0,e = 1)—that is, rows 1 and
3 in Table 2—which is known as “marginalizing” over C. Note
that certain marginal probabilities, such as this one, can also be
calculated directly from the parameterization in Table 1. Consider
a marginal probability on a structure with three nodes A, B, and C.
The marginal probability P(a = 1,c = 1) can be obtained from the
sum of the two joint probabilities P(a = 1,b = 1,c = 1) and P(a =
1,b = 0,c = 1), effectively “marginalizing out” B. In sum, mar-
ginal probabilities can be calculated by summing over joint prob-
abilities.

Marginal probabilities are important for two reasons. First, they
are inferences in their own right. For example, on the chain
C—M—E, one might want to know P(m = 1) or P(e = 1). Second,
marginal probabilities are important because they are often re-
quired when deducing conditional inferences, which is explained
in the next section.

From Joint Probabilities and Marginal Probabilities to
Conditional Inferences

A conditional inference is an inference of the probability of the
state of one variable when the states of some or all of the other
variables are known. Suppose that we want to infer P(c = 1lle = 1)
on a C—FE structure (perhaps the probability that a farm had an
early frost given that there was a poor tomato harvest). Equation 1,
which involves an application of Bayes’ rule, provides the math.
The derivation requires four steps; compare Equation 1 with Equa-
tion 2, which shows the four steps used for any inference in this
article. The first step is simply the definition of a conditional
probability, which equals the joint probability of the two variables
(C and E) divided by the marginal probability of the variable that
is conditioned upon (E). The second step expands the denominator
by marginalization. The third step converts the joint probabilities
into the factorization for the causal structure. The fourth step uses
the parameterization to convert the conditional probabilities into
the parameters. From the final product, it can be seen that P(c =
lle = 1) increases as P(c = 1) and S increase and as S, decreases.

This relatively simple math provides the basis for a wide
variety of inferences across different types of causal structures.
(We make a suggestion when deriving inferences: convert prob-
abilities of the form P(a = 0) to [1 — P(a = 1)] and P(a = 0lb
= 1)to [l — P(a = 11b = 1)]. But remember that P(a = 1lb =
0) # [1 — P(a = 1Ib = 1)].)

Equation 1. An Inference on a C—E Structure

Plc=1l,e=1) Plc=1le=1)
Plc=1lle=1)= =
Ple=1) Pc=l,e=1)+Plc=0,e=1)
B Ple=1lc=1)P(c=1) _ Sc+ 84— ScSa
CPle=1llc=DP(c=1)+Ple=1lc=0)P(c=0) Sc+S8,/Plc=1)—ScS,

Equation 2. Canonical Method of Calculating Inferences

PX.Y,2) PX,Y,Z)
P(Y,Z2) B Px=1Y,2)+ Px=0,Y,2)

convert joint probability  convert conditional probabilities

P(XIY,Z) =

... simplify

into factorization into parameters

Reasoning Based on Observed Frequencies

So far we have explained how to derive quantitative inferences
from the structure and the parameters of the network. However, in
many instances in the real world (and in some experiments),
people experience the probabilistic relationships between the vari-
ables in a network. In such cases participants may rely on mem-
ories of specific events rather than reason on the structure itself.

Consider a scenario in which you are told that C—E, and then
you observe whether C and E are present or absent on 20 separate
trials. For example, perhaps you observe 20 different farms and
note whether each farm had an early frost or not (the cause) and
whether each farm had a poor tomato harvest or not (the effect).
One could theoretically tabulate the frequencies of C and E to
compile Table 2 and perform inferences on Table 2 without
using Bayes’ rule. For example, P(c = lle = 1) = P(c = l,e =
1)/P(e = 1) = row 1/(row 1 + row 3). However, the number of
rows in the joint probability table grows exponentially with the
number of variables. The causal network framework greatly
simplifies inference because the number of parameters (base
rates and strengths) is often much smaller than the number of
rows in a joint probability table.

Reasoning About Interventions

So far all the inferences have involved situations in which a
person learns about one piece of information and then infers
another (e.g., “What is the likelihood of a poor tomato harvest
given an early frost?”). Causal networks are also useful for mod-
eling “interventions,” when an actor intervenes on a causal struc-
ture to set a variable to a particular value and then infers the effects
of that intervention on other variables. The ability to distinguish
interventional versus observational inferences has often been cited
as a hallmark of causal reasoning in humans (e.g., Meder et al.,
2008; Sloman & Lagnado, 2005; Waldmann & Hagmayer, 2005)
and even in rats (Blaisdell, Sawa, Leising, & Waldmann, 2006).

Pearl (2000) and Spirtes et al. (1993) presented a framework for
understanding interventions. The basic idea is that when an inter-
vention sets a variable to a particular state, it severs all the ties
from other causes of the manipulated variable. The intervention
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Poison: Early Tomato
set c=1 : Frost (F)\\ Fruitworm (W)
Poor Poor Tomato
Cantaloupe Harvest (T)
Harvest (C)

Small Profit from
Tomatoes (P)

Figure 7. Farming scenario after an intervention poisoning the canta-
loupe.

propagates to the effects of the manipulated variable but not to its
causes. For example, suppose that a jealous neighbor sprays a
poison on the cantaloupes, ensuring a poor cantaloupe harvest.
This intervention can be modeled by cutting the link from F to C
(see Figure 7). Normally a poor cantaloupe harvest might be a sign
that there was an early frost. However, because we know that the
cantaloupes were poisoned, we know that there is no longer a
relationship between an early frost and the cantaloupe harvest.
Once the links to the manipulated variable have been eliminated,
all the inferences on the resulting structure are exactly the same as
explained above. This method of calculating the effect of inter-
ventions is appropriate for “perfect” interventions—when the in-
tervention completely determines the state of the manipulated
variable, and the intervention is independent of the rest of the
network (Meder, Gerstenberg, Hagmayer, & Waldmann, 2010;
Woodward, 2003).

In the next sections, we discuss inferences on various causal
structures. Note that the earlier discussion of the Markov Assump-
tion has already noted many inferences on causal structures. Here
we discuss the rest of the inferences for which empirical research
exists.

Chain C—M—E

Here we discuss transitive and marginal inferences on chains.
We skip consideration of inferences about the state of the mediator
given C and E because no studies have provided results on the
quality of these judgments.

Inferring the Effect From the Cause:
Transitive Causal Inferences

Probabilistic causal relations are transitive. On the chain
causal structure, if C is known to cause M, and M is known to
cause E, then there should be a correlation between C and E. If
both links are positive or if both are negative, then the rela-
tionship between C and E should be positive. However, if one
link is positive and the other is negative, then the relationship
between C and E should be negative. Equation 3 shows how to
derive the transitive inference. We do not reduce Equation 3 all
the way down to causal strengths because the present format in
terms of conditional probabilities can be used regardless of
whether the links are positive or negative (i.e., P(e = 1lm = 1)
< P(e = 1llm = 0)).

Equation 3. A Transitive Inference on a Chain

P(c= l,e:l)_P(c:l,m:l,e: D+ Pc=1,m=0,e=1)
Pe=1) Pe=1)
=[P(e=1lm=1) = P(e = llm = 0)|P(m = llc = 1) + P(e = 1lm = 0)

Ple=1llc=1)=

Baetu and Baker (2009) had participants learn the contingen-
cies between C and M and between M and E separately and then
asked about the relationship between C and E. They found that
people generally followed the normative pattern: a positive
relation if both links were positive or both were negative,
otherwise a negative relation. However, their inferences from C
to E were weaker than predicted by Equation 3; that is, the
difference between P(e = llc = 1) and P(e = llc = 0) was too
small. Note that participants inferences’ were made on a —10
(“when C is 1 it perfectly prevents E from being 1”) to +10
(“when Cis 1 it perfectly causes E to be 1) scale. We describe
results on a 0.00 to 1.00 probability scale when we felt that they
could be transformed into a probability scale without a signif-
icant change in meaning.

Jara et al. (2006) examined the learning of chain structures in a
“second-order conditioning” paradigm. Participants saw M paired
with E and C paired with M. In one set of experiments, participants
inferred that C causes E even though they never saw C and E
appear together: They made the transitive inference. In a second
set of experiments, after participants learned the M—FE and C—M
relationships, they were subsequently presented with a set of trials
in which M occurred without E, which was intended to extinguish
the M—E relationship. Surprisingly, participants still inferred that
C would cause E. Some associative models predict that people
would form a direct association between C and E, contrary to the
chain structure.

In another study, participants were told about the chain
structure, worked through 192 trials in which they observed C,
M, and E, and lastly judged P(e = llc = 1) (von Sydow et al.,
2010; also see von Sydow, Meder, & Hagmayer, 2009). Nor-
mally if the C—M and M—E links are both positive, then there
will be a positive relation from C to E. However, von Sydow et
al. (2010) created a set of stimuli in which there was zero

When inferring E
from C and not
Y knowing the state of
M, people make the
transitive inference,
but not as strongly
as they should.

Figure 8. Summary of the P(EIC) inference. See Figure 4 for notational
conventions.
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correlation between C and E even though the correlations
between C—M and M—E were both positive. Technically their
stimuli violated the Markov condition; conditional on M, C and
E were negatively correlated. In this way, these experiments
were designed to test whether people rely more on the actual
observed contingencies or on the transitive relationship implied
by a chain structure that is faithful to the Markov Assumption.
Even though there was zero correlation between C and E,
participants inferred a positive correlation of about .25 (in
Experiment 1; .10—.15 in Experiment 2; von Sydow et al.,
2010). These results show that people infer transitivity, a con-
ceptual property of causal Bayesian networks, even when the
experienced data do not support it.

These three studies suggest that people make transitive infer-
ences from C to E and that these inferences persist even when
contradicted by data in which there is no correlation between C
and E. But, somewhat paradoxically, when there is a correlation
between C and E in the data, the transitive inferences are not as
strong as would be predicted by the normative model. One expla-
nation for this pattern of findings is that people’s transitive infer-
ences are based on their beliefs about the causal structure (i.e., that
transitive inferences are warranted by a chain structure) and are
less sensitive to the experienced contingencies. Figure 8 summa-
rizes these findings. Throughout the review, diamonds represent
parameters that are not used as they should be (caution sign).

Marginal Probabilities

Rehder and Kim (2010) investigated how people infer the mar-
ginal probability of a mediator and effect; P(m = 1) and P(e = 1).
They presented people with chain structures and told participants
the strengths of the causal relationships. We used participants’
inferences of P(c = 1), combined with the strengths that they were
given, to model P(m = 1) and P(e = 1).

Overall, participants were sensitive to the qualitative predictions
of the normative causal network; however, they were not sensitive
enough to the strengths. In one condition (Experiment 2), if a cause
occurred its effect would occur 75% of the time, S = Sy, = .75, and
the effects would occur only if their causes occurred (i.e., S, = 0). In
this case, the marginal probability of each successive node should
decrease; however, the decreasing slope was not as steep as the
normative model implies. People inferred that P(c = 1) = .78, P(m =
1) = .73, and P(e = 1) = .67, but given their belief that P(c = 1) =
.78, the other two inferences should have been P(m = 1) = .58, and
P(e = 1) = 44. In sum, people were insufficiently sensitive to the
strengths.

Common Cause: E<—C—E,

Inferring the Cause From Effects: P(CIE,, E,)

Assuming positive causal relationships, the more effects that are
present, the more likely the cause is to be present. Rehder and
Burnett (2005) confirmed that research participants demonstrate
this effect. However, there are no results yet on how close this
inference is to the normative calculations. In particular, consider a
case in which C influences three effects, all with the same strength.
The difference in the likelihood of C being present when only one
versus two of the effects are present should be larger than the

difference between two versus three of the effects. This pattern of
reasoning is not apparent in Rehder and Burnett’s (2005) experi-
ments, although their experiments do not provide a strong test for
this effect because participants did not know the precise parame-
ters.

Inferring One Effect From Another Effect: P(E,IE,)

Two effects of a common cause should in general be correlated
(Equation 4). The reason is simply that when the common cause C
is present, assuming positive causal relations, then all the effects
are more likely to be present, but when the common cause is
absent, all the effects are more likely to be absent.

Equation 4

Ple;=lle;=1)

_ P(e; = lle = D)P(e, = 1le = DP(c = 1) + P(e; = 1le = 0)P(e, = llc = 0)P(c = 0)
B P(ey = llc = 1)P(c = 1) + P(es = llc = 0)P(c = 0)

Waldmann and Hagmayer (2005) performed a study in which
participants were given a common cause structure and experienced a
series of learning trials during which they observed all three variables.
At the end participants inferred P(e, = lle, = 1) > P(e, = lle, = 0),
reflecting transitivity. However, this is not surprising because out of
the 20 learning trials, in all but two, E, and E, had the same value.
More impressive was that these inferences were sensitive to P(c = 1)
and the causal strengths. However, one problem with this study for
our purposes was that participants experienced learning trials in which
they observed C, E,, and E,. Thus, it is possible that when they were
inferring P(e, = lle, = 1), they were merely making a direct infer-
ence from FE, to E, rather than reasoning from E, up to C and then
back down to E|.

Hagmayer and Waldmann (2000; see also Waldmann, Cheng,
Hagmayer, & Blaisdell, 2008) conducted a similar study, but on
each learning trial participants either observed C and E, or C and
E, They had to infer the correlation between the two effects based on
the causal model. At the end, participants inferred P(e; = lle, = 1)
and P(e, = lle, = 0), and later these were converted to a phi
correlation coefficient. This condition was also compared to a
common effect structure, C,—E<-C,, in which participants
learned about C, and E or C, and E and later judged the correlation
between C, and C,. Unlike a common cause, a common effect
structure implies no correlation between C, and C,.

In Experiment 1,' people’s estimates of the correlation (r = .29)
were much weaker than the true correlation (r = .62) and were not
significantly different from the common effect control condition.
In Experiment 2, the inferences also were quite low (r = .26)
compared to the normative value (r = A44) and, again, not
different from a control condition. Perales et al. (2004) reported a
similar set of experiments. Their participants did infer correlations
between E, and E, and they gave higher correlations in the
common cause than in the common effect condition. However, in

! Hagmayer and Waldmann (2000) also collected a separate “implicit”
measure that was closer to the normative value. However, this measure
again might not reflect pure reasoning from E, to C and then to E, because
participants observed C and then predicted E, and E,.

2This is a different value than the one cited in the original article
because of a slight error in calculating AP.
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Figure 9. Summary of the P(E||E,) inference. See Figure 4 for notational
conventions.

When the common cause
is unknown, people use
one effect to infer another,
but do not believe that
they are as strongly
correlated as they are.

some of the conditions, particularly those with deterministic links,
the inferred correlations were considerably lower than the norma-
tive calculation (although they used an unusual correlation rating
scale).

One final experiment tested this inference in a different way.
Von Sydow et al. (2010, Experiment 2; see also the discussion of
transitivity in causal chains above) told participants about the
common cause structure and had them observe 192 learning trials
of all three variables. Recall that even though there were correla-
tions between C and E, and C and E,, there was zero correlation
between E, and E, (i.e., the learning trials violated the Markov
condition). In contrast to the chain structure in which people
inferred transitivity, their judgments of P(E,I|E,) for the common
cause structure implied no transitivity. In sum, these experiments
suggest that people do not always believe that effects of a common
cause are correlated, even though causal Bayesian networks imply
that they usually are. See Figure 9 for a summary of the P(E||E,)
inference.

Inferring E, After an Intervention on E,

Waldmann and Hagmayer (2005; Experiments 3 and 4) also
had participants infer E, after an intervention on E,; P(e, =
liset e, = 1) or P(e; = llset e, = 0). An intervention on E,
severs the link from C to E,, so the only way to infer E, is
directly from C. Waldmann and Hagmayer (2005) found that
when C had a higher base rate, P(e, = llset e, = 1) was higher.
This finding suggests that people have an understanding of what
an intervention means in terms of causal structures and that they

When the state of Cis
unknown and there is an
intervention on E,, people

use the base rate of C

and the strength of Con
E1 to infer E1. However,

O e—

<7

they do not use these two
parameters as much as
they should, and they
also use the state of E,,

®

which is irrelevant.

Figure 10. Summary of the P(E,lset E,) inference. See Figure 4 for
notational conventions.

are able to perform inferences on the remaining causal struc-
ture. Manipulating the strength of C on E, also had some effect
on the inference of E,.

However, participants did not answer these questions entirely
normatively. First, when the base rate of C and the strength of
C on E, were manipulated, the inferences did not change as
much as the normative model predicts they should change.
Additionally, participants predicted that E, was more likely to
be present when E, was intervened upon and set to 1 compared
to 0, even though the intervention implies that E, is irrelevant
for inferring E,.

Hagmayer and Sloman (2009) tested whether people would
recommend an action intervening on E, to produce a change in E,.
Surprisingly, there were some participants who recommend such
an intervention. However, as with all studies using real-world
knowledge, it is hard to know if these participants had additional
beliefs, not explicit in the instructions, which would justify such an
intervention (e.g., perhaps they believed that there might be an
additional link E,—FE,). See Figure 10 for a summary of the
P(E,lset E,) inference.

One Link C—E

In this section we discuss how people use the three parameters
of a one-link causal structure, P(c = 1), S., and S,, when per-
forming various inferences.

Inferring E Given C

As can be deduced from Table 1 row I, Pe = llc =1)=1— (1
— Se) (1 = S,). Fernbach, Darlow, and Sloman (2011; Experiment 2)
tested whether people are sensitive to S, using scenarios involving
generic real-world events. For example, the unpopularity of the mayor
of a city (C) could cause the mayor’s new policy to be unpopular (E),
but a policy could be unpopular for other reasons even if the mayor is
popular (A). Participants were asked three questions that defined the
parameters of the one-link structure: the probability that a mayor of a
major city is unpopular, P(c = 1), the probability that the mayor’s
unpopularity would cause his or her new policy to be unpopular, S,
and the probability that a new policy would be unpopular even if the
mayor is popular, P(e = llc = 0) = S,. Fernbach et al. then used
these three parameters to predict how participants would judge P(e =
llc = 1), the probability of a policy’s being unpopular given that the
mayor is unpopular.

Fernbach et al.’s (2011) participants’ inferences were mainly
determined by the strength of the primary cause, S, and were not
correlated with their beliefs about S,. Their inferences of P(e =

When inferring E, and
A knowing the state of C,

f people do not sufficiently

consider the possibility that

other unknown alternative
causes A could produce E.
Summary of the P(EIC) inference. See Figure 4 for notational

Figure 11.
conventions.
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’5\, When inferring E, without
knowing the state of C,
people do not sufficiently
consider the possibility that
other unknown alternative
causes A could produce E.

Figure 12.
conventions.

Summary of the P(E) inference. See Figure 4 for notational

llc, = 1) were also 8% lower than the normative model (calculated
using each participant’s responses to the other three questions).
Fernbach et al. attribute both of these results to participants’ failure
to consider the possibility that A could produce E. An alternative
interpretation is that unless A is explicitly mentioned, people
interpret the question P(e = 1lc = 1) to be asking for S.

Of course, whenever real-world stimuli are used it is hard to
know if participants have additional causal beliefs not picked up
by the experimenters. Fernbach and Rehder (2012; Experiments 1
and 2) tested the same phenomenon, but with artificial stimuli. For
example, they said that iodized helium (C) causes stars to be very
hot (E). They also told participants the strength of the causal
relationship, S and the likelihood that some other factor caused
the same effect, P(e = llc = 0) = S,. When they manipulated both
factors in a 2 X 2 design, participants clearly made use of S but
were not at all sensitive to S,.

Fernbach and Rehder (2012) also asked participants to estimate
P(e = 1lc = 0). This should have been extremely easy because
participants were explicitly told the likelihood of some other cause
producing the effect; S,. However, they were insensitive to vari-
ation in S,. This is odd given that participants literally had this
piece of information right in front of them—it was a parameter, not
an inference. In sum, people appear to view S, as less relevant
than it is in reality for both P(e = 1lc = 1) and P(e = llc = 0). See
Figure 11 for a summary of the P(EIC) inference.

Inferring the Effect

As shownin Table I row 1, Pe=1) =1 — (1 — ScP(c = 1))(1
— S,). Fernbach et al. (2011; see description above) collected
judgments of P(e = 1), and we analyzed the results by calculating
what P(e = 1) should have been given their participants’ average
estimates of P(c = 1), Si, and S,. Just as for the P(e = llc = 1)
inference, their participants’ inferences of P(e = 1) were 9% lower
than the normative model. This underprediction might be ex-
plained as a failure to consider the possibility that alternative
causes could produce the effect.

Rehder and Kim (2010; see also Fernbach & Rehder, 2012) also
asked participants to infer P(e = 1). Overall, their participants were
sensitive, but not sufficiently sensitive, to S,. For example, in one
condition (Experiment 2 in Appendix C) S = .75 and S, was
manipulated between 0 and .75. Based on their beliefs of P(c = 1),
participants’ inferences should have changed from .56 to .88, but they
changed only from .69 to .79. See Figure 12 for a summary of the
P(EIC) inference.

Table 3

Direction of Influence of Parameters in Equations 5 and 6
Parameter P(c=1lle=1) P(c = lle = 0)
P(c, = 1) 1 1

Sc 1 y

Sa ! —

Note. Parameter has an increasing ( 1), decreasing ( | ), or no effect (—)

on the inference.

Inferring C Given E

Inferring a cause given knowledge of an effect is called a “diag-
nostic inference” as an analogy to medical diagnosis in which a
disease (cause) is sought to explain a set of symptoms (effect).
Equations 5 and 6 show these inferences, and the Table 3 shows the
directions of the influences of the parameters assuming positive
strengths. (See Meder, Mayrhofer, and Waldmann, 2009, for a mod-
ified normative framework for inferring P(c = lle = 1) when the
causal structure is not known a priori.) In the following three sections,
we separately evaluate the evidence of whether people are sensitive to
the three parameters for inferring P(c = lle = 1).

Equation 5
Sc+ Sy — S8
Plec=1lle=1)= € A Tod
S+ Su/Plc=1) = ScS,
Equation 6
17SC
Pc=1lle=0)=——"""—
1I/P(c=1)—S¢

Use of P(c = I). When inferring causes from effects, people
notoriously exhibit base rate “neglect” or “underappreciation”; in
other words, they fail to use P(c = 1) to the extent dictated by
Bayes’ rule (e.g., Bar-Hillel, 1980; Eddy, 1982; Kahneman &
Tversky, 1972; Koehler, 1996). In contrast, others have suggested
that when people learn the parameters from experience instead of
being told the parameters, their inferences are closer to the correct
Bayesian calculation (e.g., Christensen-Szalanski & Beach, 1982;
Gigerenzer & Hoffrage, 1995; see also the discussion above on
reasoning based on observed frequencies).

Irrespective of this debate, the previous research on “base rate
neglect” often involved statistical dependencies and did not nec-
essarily engage causal reasoning habits. Thus, we rely on Meder,

3 When inferring C from E,
people do not sufficiently use
the base rate of C nor the
A likelihood of alternative

unknown causes A producing
E. There is mixed evidence

(both over and under-use)
about the strength of Con E.

Figure 13.  Summary of the P(CIE) inference. See Figure 4 for notational

conventions.
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Hagmayer, and Waldmann’s (2009) Experiment 2, which involved
explicitly causal scenarios. Meder et al. (2009) taught participants
a structure with four nodes and showed them a series of learning
trials allowing them to learn the parameters from experience.
Afterward, participants estimated P(c = lle = 1). Even though the
C—E link was part of a larger causal structure, the rest of the
structure is irrelevant for this particular inference.

In one condition for which P(c = 1) = .30, S = .35,and S, = .57,
P(c = lle = 1) should be .35. Participants’ inferences were right on
target. However, in another condition in which P(c = 1) = .65, S =
.80, and S, = .24, P(c = 1le = 1) should be .87; yet participants’
inferences were only .51. Unfortunately for our purposes, all three
parameters changed across the two conditions prohibiting a clear
analysis of P(c = 1). However, in the second condition P(c = 1l
e = 1) was lower than P(c = 1), which should never happen with
positive causal relations. This result reflects, at minimum, a misuse
of the base rate.

Use of S.. Meder et al. (2008) and Meder, Hagmayer, and
Waldmann (2009) also examined the use of Sc: if S > 0, then
P(c = lle = 1) > P(c = lle = 0). One trend across all their
experiments is that participants’ inferences were not nearly as
extreme as predicted. For example, in one experiment (Meder et
al., 2008, Experiment 1), the normative probabilities were P(c =
lle = 1) = .95 and P(c = lle = 0) = .10. However, participants’
responses, converted to probabilities, were P(c = lle = 1) = .76
and P(c = lle = 0) = .43. Thus, even though the direction of the
effect was correct, the estimates were “conservative.”

Fernbach and Rehder (2012; Experiment 1) told their partici-
pants the parameters S and S, and collected judgments of P(c =
lle = 1). Both Sc and S, were manipulated in a 2 X 2 to be either
strong or weak. Unfortunately, the third relevant parameter, P(c =
1) was not provided to participants. We analyze this study two
ways. First we assumed a plausible value of P(c = 1) = .67.
Comparing the conditions when S was increased but S, was held
constant, we would only expect an increase of about .03—.06 in
P(c = lle = 1). However, participants inferences increased by
about .20. Another way to analyze these data is to reverse-derive
P(c = 1) using the normative model given the supplied values of
Sc, S, and the participants’ average judgment of P(c = lle = 1)
for one condition. Then the normative inference for P(c = lle =
1) can be derived for the other condition. This analysis also shows that
participants’ inferences varied foo much based on the change in Sc.

Fernbach and Rehder’s (2012) study also asked for inferences of
P(c = lle = 0). The increase in S led to a decrease in estimates
of P(c = lle = 0); this general pattern is normative. However, both
methods of analysis reveal that the inferences of P(c = 1le = 0)
changed too little based on the change in Sc. In sum, there does not
appear to be a clear pattern of how S is utilized when inferring the
state of a cause from an effect: There are complicated patterns of
over- and underutilization of S relative to the normative model.

Use of S,. Fernbach and Rehder (2012) told participants the
parameters of the C—F structure, and they manipulated S,. In their
Experiment 1, the manipulation of S, should have produced differ-
ences in P(c = lle = 1) of about .12—.15, but participants inferred
differences of only about .06. Although this was a significant differ-
ence, it is about half as much as is expected by the normative model.

Two studies have examined the impact of making the alternative
cause A explicit when inferring the cause. The idea is to provide a
reason for the times when the effect occurs without the observed

cause. The standard task so far involves a C—F structure with an
implicit alternative cause; we have interpreted P(e = 1llc = 0) as
S.- Two studies have reframed the scenario as a common effect
structure C—E<—A, in which A is explicitly mentioned and the
parameters of A are provided to participants.

Krynski and Tenenbaum (2007; Experiment 2) used the stan-
dard mammography base rate neglect problem (cancer causes a
positive mammogram, but there can also be false positives). Par-
ticipants were told the parameters P(c = 1), Sc. and S, and they
inferred P(c = lle = 1). In one condition the false positive rate S,
was not explained; the possible causes were implicit. In another
condition the wording explicitly mentioned a second cause of a
positive mammogram result, a benign cyst.

The inferences were more normative in the condition in which
the alternative cause was explicitly mentioned. About 42% of the
inferences in the “explicit” benign cyst condition were right on
target. In contrast, only 16% of the inferences in the “implicit
alternative cause” condition were right on target. Krynski and
Tenenbaum (2007) interpreted this result as showing that people
have an easier time reasoning about explicit causes than about
fundamentally stochastic causes (the unexplained false positive
rate). However, this explanation is not entirely satisfying because
it is unclear why people wouldn’t just infer an additional cause for
any one-link causal structure in which the effect occurred (positive
mammogram) without the observed cause (malignant tumor).

Fernbach and Rehder (2012; Experiment 2) performed a similar
manipulation making the alternative cause either implicit or ex-
plicit. Manipulating S, had no effect in the explicit condition, and
the effect in the implicit condition was much smaller than ex-
pected. In sum, multiple studies have found insufficient use of S,.
See Figure 13 for a summary of the P(E) inference.

Common Effect: C,—E<C,

In this section we focus on common effect structures when there
are only two causes, C; and C,, both of which are explicit in the
model. This means that if both causes are absent then £ must be
absent because there is no alternative background cause A. In this
case, still assuming a noisy-OR gate with no interactions, then
Ple=1)=1—[1 — P(c; = DS][l — P(c, = DSc,].

Discounting: P(C,| E) Versus P(C,IE,C,)

Here we continue the discussion on P(c = lle = 1) that began
in the section on C—E structures but now discuss this inference in
relation to P(c; = lle = 1,c, = 1). Assuming generative causal
relationships (which we assume for this entire section), P(c, = lle
=1) > P(c, = lle = 1,c, = 1). This inference is atypical: In most
other structures the presence of one node increases the probability
of another node (again assuming generative causal links). Alter-
natively, sometimes due to the Markov condition (“screening
off”), one node is irrelevant to the probability of another node. But
for a common effect structure, the presence of C, actually de-
creases the likelihood of C,. This atypical reasoning pattern has
been viewed as a key aspect of causal reasoning (see Khemlani &
Oppenheimer, 2010, for a review).

We explain this pattern of reasoning using the Farming Sce-
nario. In this scenario, an early frost and a tomato fruit-worm
infestation are both sufficient to cause a poor tomato harvest;
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Table 4
Example Data for Discounting
Tomato fruit-worm  Poor tomato  Number of

Row  Early frost (F) infestation (W) harvest (7) farms

A 1 1 1 10

B 1 0 1 90

C 0 1 1 90

D 0 0 0 810

F—T<—W. Table 4 shows a hypothetical sample of 1,000 farms for
which 10% experience an early frost and 10% experience a tomato
fruitworm infestation.

Within the 190 farms that had a poor tomato harvest (rows A—C),
100 of them had a tomato fruit-worm infestation; P(w = 1lr = 1) =
.53. But if we know that a farm had a poor harvest and that it also
had an early frost (rows A and B), only 10 out of the 100 had a
tomato fruit-worm infestation; P(w = 1l = 1,f= 1) = .10. This
phenomenon has been known in artificial intelligence (e.g., Pearl,
1988) as “explaining away,” and in psychology as “discounting”:
knowing that the farm had an early frost explains away or dis-
counts the possibility that the farm had an infestation.

More generally, the pattern of discounting can be conceived in the
following way. Observing that E is present increases the probability
that C, is present compared to its base rate; P(c, = 1) < P(c, = lle =
1). Subsequently observing that C, is also present decreases the
likelihood of Cy; P(c, = lle = 1) > P(c, = lle = 1,¢c, = 1). If C,
and C, are both sufficient to produce E, then the probability of C,
falls all the way back down to its base rate; P(c, = 1) = P(c, =
lle = 1,c, = 1). However, if C, is weak and is unlikely to explain
the presence of E, then the probability of C, still remains higher
than its base rate; P(c; = 1) < P(c; = lle = 1,c, = 1). See
Equations 7 and 8 for the normative calculations, and see Table 5
for the direction of the influence of the variables in Equations 7
and 8. We now discuss empirical results related to discounting.

Equation 7
Sc,
—P(c2 - +Sc, = S¢S,
P(c,=1le=1)=
+ - SC SC
P(c;=1) P(c;=1) L
Equation 8

Sc, t 8¢, =S¢, Sc,
Plc,=1lle=1,c,=1)= =

Se,
SCl + m — SCISCZ

The prototypical “discounting” effect: P(c, = 1lle = 1,c, = 1)
< P(¢, = 1le = 1). Morris and Larrick (1995) defined discount-
ing as the relationship between P(c¢, = lle = 1) and P(c, = lle =
1,c, = 1) and asked whether people discount normatively. There is
a rich history of research on discounting within social psychology.
However, most of these studies did not present people with all the
parameters of the model, nor did they assess the parameters that
participants were intuitively using, so that a normative analysis is
not possible. To answer this question, Morris and Larrick (1995;

pp- 340-341) conducted a study using a classic discounting sce-
nario in which participants were told that they would read essays
written by other students about Castro’s regime in Cuba; half of
the writers were randomly assigned to write essays that were pro-
or anti-Castro (E. E. Jones & Harris, 1967). In terms of the causal
structure framework, one of the potential causes, C,, was whether
the writer’s personal attitude was pro- or anti-Castro. The second
potential cause, C,, was whether the writer was assigned to write
an essay that was pro- or anti-Castro. The effect, E, was whether
the essay was pro- or anti-Castro.

Participants first judged the following four parameters: P(c, =
1), the prior probability of the writer having a pro-Castro attitude,
P(c, = 1), the prior probability of a writer being assigned to write
a pro-Castro essay, P(e = llc; = 1,c, = 0) = S, the probability
that a person with a pro-Castro attitude would write a pro-Castro
essay even if he or she was assigned to write an anti-Castro essay,
and P(e = llc;, = 0,c, = 1) = S, the probability that a person
with an anti-Castro attitude would write a pro-Castro essay if he or
she was assigned to write an pro-Castro essay. After reading the
essay, which was always pro-Castro, the participants rated the
probability that the writer had a pro-Castro attitude P(c, = lle =
1). Finally, participants were told that the writer was assigned to
write a pro-Castro essay, and the participants judged again whether
the writer’s attitude was pro-Castro, P(c; = lle = l,c, = 1).

Morris and Larrick (1995) found the normative discounting
effect, P(c; = lle = 1) = .35 > P(c; = lle = 1,¢c, = 1) = .30.
In fact, the inference of P(c, = lle = 1) was close to the normative
calculation of .36 based on participants’ own beliefs about the
parameters. However, the P(c, = 1le = 1,c, = 1) = .30 inference
was numerically higher than the normative calculations (.26),
though not significantly so. Thus, it seems that participants did
discount, though only about half as much as they should have.

Fernbach and Rehder (2012; Experiment 3, “present” condition)
told participants a hypothetical scenario about a common effect
structure, instructed them about S, and S, and asked them to
infer P(c, = lle = 1) and P(c, = lle = 1,c, = 1). In one condition
in which S, was strong, there is a slight trend for P(c, = lle =
l,c; = 1) < P(c, = lle = 1). Yet in another condition in which S,
was weak, there was a slight trend in the opposite direction.
Discounting should normatively be greater when S, is stronger,
but it should never go in the opposite direction so long as the two
causes are independent (see the next section). Unfortunately be-
cause participants were not told specific values for P(c, = 1) and
P(c, = 1) we cannot quantitatively compare these inferences to the
normative model.

Rehder (2012) told participants about a common effect structure
without the parameters and then had them choose which one is

Table 5
Direction of Influence of Parameters in Equations 7 and 8

Parameter P(c, = lle = 1) P(c,=1lle=1,c,=1)
P(c; = 1) T T
SCI T T
Pc; = 1) ) —
Sca ! l
Note. Parameter has an increasing ( ), decreasing ( |, ), or no effect (—)

on the inference.
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When inferring C, after

knowing that both E and
C, are present, people

insufficiently discount
based on the fact that
C, can explain E.

©®

Figure 14. Summary of discounting. See Figure 4 for notational conven-
tions.

higher (or equal): P(c, = lle = 1,c, = 1) versus P(c, = lle = 1).
Across two experiments participants were either more likely to
choose the former—the opposite of discounting—or there was not
a significant difference.

In sum, relatively few studies that have examined discounting
allow for comparisons to the normative model. Out of those that
do, discounting appears to be weak, and sometimes the inferences
go in the opposite direction of discounting.

A related discounting effect: P(c, = 1lle = 1, = 1) <
P(c, = 1le = 1,c, = 0). Several studies have compared infer-
ences of C;, when C, is present versus absent. Hagmayer and
Waldmann (2007) and Luhmann and Ahn (2007; Experiment 3)
presented participants with a series of learning trials; on each trial
they observed C, and E and judged whether C, was present or
absent. Fernbach and Rehder (2012; absent versus unknown con-
ditions in Experiment 3) and Rehder (2011; independent condi-
tion) told people the parameters S, and S, and had them make
judgments of P(c; = lle = 1,c, = 1) and P(c, = lle = 1,c, =
0).

For all these studies, participants’ inferences did exhibit the ex-
pected asymmetry P(c, = lle = 1,c, = 1) < P(c, = lle = 1,c, =
0). Unfortunately, in all these studies P(c, = 1) was not identified,
S0 quantitative comparisons to the normative model for P(c, = 1l
e = 1,c, = 1) were not possible. There was, however, an unex-
pected pattern. Because there are only two possible causes of E,
P(c, = 1l e = 1,c, = 0) should equal 1. In Hagmayer and
Waldmann’s (2007) study (Experiment 1), participants’ inferences
of P(c, = 1l e = 1,c, = 0) were close to 1, but in Luhmann and
Ahn’s (2007) study and Fernbach and Rehder’s (2012) study they
were around 0.75. A possible interpretation would be that partic-
ipants inferred that there was another unobserved cause of E.
Inferring another unobserved cause could also dampen the stan-
dard discounting effect P(c, = lle = 1,c, = 1) < P(c, = lle = 1).
However, if participants in these studies had inferred unobserved
generative causes, they should also have given higher ratings of
P(e = llc; = 1) than would be expected from the two known
causes. At least in Fernbach and Rehder’s (2012) study, this was
not the case.

Sussman and Oppenheimer’s (2011) investigation involved
three variables representing plumbing parts (e.g., tightness of a
clamp, amount of water flowing through a spout); they also tested
discounting. The authors found no discounting in Experiment 1,
and in Experiment 2, discounting was less than predicted by the
normative model. See Figure 14 for a summary of discounting.

The influence of S, on P(¢c, = 1le = 1) and P(c, = lle = 1,c,
=1). BothP(c; = lle = 1) and P(c, = lle = 1,c, = 1) should
decrease with higher values of Sc,; the stronger that C, is, the more

sufficient that C, is to explain the presence of E and thus the less that
C, is needed to explain E. Fernbach and Rehder’s (2012) participants
were told about the common effect structure and told the parameters
Sc, and S,. Participants’ inferences of P(c, = lle = 1,c, = 1) were
lower when S, was higher (Experiment 3; Present condition). How-
ever participants’ inferences of P(c, = lle = 1) were not sensitive to
Sc» (Experiment 2, explicit condition and Experiment 3, unknown
condition). But, these inferences cannot be quantitatively compared to
the normative model because two parameters, P(c, = 1) and P(c, =
1), were not known.

Discounting when two causes are correlated. In the previ-
ous discussion of discounting on a common effect model,
C,—E<C,, the two causes were assumed to be independent, in
which case P(c;, = 1) = P(c, = lle = 1) = P(c, = lle = l,¢c, =
1). Here we consider instances when the two causes are correlated
(see Figure 15B), in which case these inequalities do not neces-
sarily hold. Instead of presenting equations, we explain discount-
ing with correlated causes using Figure 15. C; and C, could be
correlated if there is an underlying common cause or a direct link
between C, and C,; the inferences in Figure 15A are derived
assuming an additional link C,—C, with the joint probability
P(C,,E,C,) = P(EIC,,C,)P(C,IC)P(C)).

One easy way to think about discounting is to consider how the
inference about C, changes after first learning that ¢ = 1, and
again after also learning that ¢, = 1. Thus, one should read Figure
15A from left to right. The “independent” line in Figure 15A
shows a typical discounting pattern when the two causes are
independent. Learning that E is present increases the probability of
C,. Then, learning that C, is also present decreases the probability
of C,.

The “positive” line in Figure 15A shows how the pattern of
inferences involved in discounting is affected when the two causes
are positively correlated. First, P(c, = 1le = 1) is higher when they
are positively correlated compared to when they are independent.
To understand why, consider the common effect with correlated
causes structure in Figure 15B. Learning that e = 1 increases the
probability of C, through the C,—E link, and it also indirectly
increases the probability of C, through the C,—C,—FE route.
Subsequently learning that C, = 1 results in a smaller drop in the
probability of C, compared to the structure with independent
causes. The reason is that learning that ¢, = 1 decreases the
probability of C, through normal discounting (the “bottom” path
C,—E<-C,) but increases the probability of C, through the
C,—C, route.

Now consider how discounting is influenced by a negative
correlation between the two causes. Learning that e = 1 increases
the probability of C, through the direct link C,—E but decreases
the probability of C, through the path C;,—C,—E. This means that
P(c, = lle = 1) is lower compared to when the causes are
independent (line Negative 1 in Figure 15). In fact, if the
C,—C,—F path is strong and C,—F is weak (Negative 2 line),
then it is possible for P(c, = 1) > P(c, = lle = 1).

Subsequently learning that ¢, = 1 results in a greater drop from
P(c, = 1lle = 1) to P(c; = lle = 1,c, = 1), compared to when the
causes are independent (compare the Independent vs. Negative 1
lines because they have similar parameters). Learning that ¢, = 1
decreases the probability of C, through normal discounting (the
“bottom” path C,—E<—C,) and also directly decreases the prob-
ability of C, through the C,—C, path.
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A Learnthat e=1  Learn that ¢,=1 Parameters Used in the Simulation
Parameters Pos. Ind. Neg.1 Neg. 2
P(c,=1 P(c,=1le=1) P(c,=1le=1,c,=1
{5 (e=1) (© ) P 2=1) Plc,=1) 5 5 5 5
' Pe=) - 5 - .
n positive Sey 5 5 5 25
S 5 5 5 75
0.75 Pc=1lc,=1) 75 . 25 25
P(cy=1lc,;=0) 25 . 75 75
0.50
B Common Effect with
Correlated Causes
0.25 < >
negative 2 p
0
Figure 15. Discounting when causes are dependent versus independent; the graph plots P(c, = 1) as the states

of E and C, are learned. Pos. = positive; Neg. = negative; Ind. = independent.

Morris and Larrick (1995; Experiment 2) tested whether people
use the correlation between C, and C, in a discounting task. Again,
the participants read essays about Castro’s regime, and they in-
ferred whether the writer was pro-Castro (C,) given that the essay
was pro-Castro (e, = 1), both before and after learning that the
writer was assigned to write a pro-Castro essay (¢, = 1). In the
independent condition, writers were supposedly assigned to write
pro- or anti-Castro essays randomly. In the positive versus nega-
tive correlation conditions, pro-Castro writers were likely to be
assigned to write pro-Castro essays (positive condition) or anti-
Castro essays (negative condition). Consistent with the normative
standard, participants discounted most strongly [P(c, = 1lle = 1)
vs. P(c; = lle = 1,c, = 1)] in the negative correlation condition,
least strongly in the positive correlation condition, and at an
intermediate amount in the independent condition.

However, one aspect of the results, not discussed by Morris and
Larrick (1995), was that across all conditions and for both judg-
ments of P(c, = lle = 1) and P(c, = lle = 1,c, = 1), participants
tended to provide lower estimates compared to the normative
standard. This underprediction resulted in some surprising patterns
of reasoning. In the negative correlation condition, participants’
average inference of P(c, = lle = 1) = .38 was lower than their
inference of P(c, = 1) = .48 (we do not know if it was signifi-
cantly lower); P(c, = 1lle = 1) should have been .51. In the
independent condition, the two inferences were essentially equal,
P(c, = lle =1) = P(c, = 1) = .48, even though P(c, = lle = 1)
should have been .63. In the positive correlation condition P(c, =
lle = 1) > P(c, = 1), although the difference was not as large as
expected. In sum, this experiment suggests that people are remark-
ably normative in their overall pattern of discounting, but the
inferences were biased to be low. These low inferences might be
explained by participants underweighting their own prior on C, or
by their own strength of C,. See Figure 16 for a summary of the
P(EIC,, C,) inference.

Summary of discounting. A number of studies have demon-
strated that people sometimes discount the likelihood of one cause

when another cause is known to have occurred and is sufficient to
explain the presence of the effect. People are even sensitive to the
correlation between the two causes. However, there are also a
number of findings in which discounting was considerably smaller
than the amount implied by the normative model, in which there
was no discounting at all, or in which the inferences went in the
opposite direction of discounting. Clearly there are many remain-
ing empirical questions about discounting.

Use of the Base Rates in Diagnostic Judgments

Reips and Waldman (2008) conducted a study of diagnostic
learning when there were two diseases (causes) that both caused
the same symptom (effect). Both diseases always caused the symp-
tom, so the diagnostic judgment P(c, = lle = 1) should perfectly
reflect the frequency of the diseases. Participants learned from
experience that C; was three times more common than C,, and
they could accurately report the base rates. Although their
judgments of P(c, = lle = 1) were greater than P(c, = lle =
1), the difference was not close to the expected 3:1 ratio.
Similar to the results for the C—E structure, this result implies
undersensitivity to the base rates.

When inferring C, from C, and

E, people appropriately used
the direct correlation between
the two causes. The inferences
were too low in general with no
clear explanation.

Figure 16. Summary of discounting with correlated causes. See Figure 4
for notational conventions.
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P(c; = 1lle = 0,c, = 1) Versus P(c; = lle = 0, ¢, = 0)
With Conjunctive Causes

So far we have only discussed scenarios in which C, and C,
combine through a Noisy-OR rule. Rehder (2011) investigated
how people reason about probabilistic conjunctive causes; when
C, and C, are both present, the combination can cause E to be
present, and there is also another independent unobserved cause of
E. In this case, P(c; = lle = 0,c, = 1,) < P(c; = lle = 0,c, =
0). When the effect is absent, if ¢, = 1, then C, is probably absent
(if it was present then E would probably have been present).
However, if ¢, = 0, then ¢, could be either O or 1.

Rehder (2011) presented participants with a common effect
structure and a conjunctive causes cover story, then told partici-
pants the causal strength parameters, and asked them to infer
P(c, = lle =0,¢c, = 1) and P(c, = lle = 0, ¢, = 0). He found
the predicted asymmetry. Additionally, he found that the infer-
ences of P(c, = lle = 0,c, = 0) were low, despite the fact that C,
was described as usually being present. This pattern probably
reflects misuse of the base rate of C,.

Inferring £ From Multiple Causes: P(EIC,,C,)

Fernbach and Rehder (2012; Experiment 3, “present” condition)
conducted a study in which participants were told about a common
effect structure, were told about the strength parameters [S-; = 0.6
and S, = .25 versus 0.75], and were asked to infer P(e = llc, =
1, ¢, = 1). Although this inference was higher when S, was
higher, the difference was not as large as it should have been. The
normative model predicts .9 versus .7, a difference of .2, but their
participants inferred only a difference of about .07. People do not
use the strength parameters as strongly as they should. See Figure
17 for a summary of the P(EIC,, C,) inference.

Counterfactual Questions: P(c; = 1| If ¢ Had Been 0
Instead of 1)

So far we have discussed inferences based on observations and
interventions. Here we discuss a third type of inference, counter-
factuals. Counterfactuals involve first observing the states of the
nodes and then asking a question about what would have been true
if the actual conditions had not all occurred. For example, suppose
one year on the farm (see Figure 1) there was neither an early frost
nor an infestation, and there was a good tomato harvest. A coun-
terfactual could be “What is the likelihood of a good tomato
harvest if there had been an early frost?”

When inferring
E from multiple
causes, people
underweight the
strengths.

®

Figure 17. Summary of the P(EIC,, C,) inference. See Figure 4 for
notational conventions.

One possible solution is to treat counterfactuals as observations;
P(good harvest | early frost). The problem with this interpretation
is that it discards our knowledge that the farm did not have an
infestation. Pearl (2000) proposed that in many situations counter-
factuals could be interpreted as interventions. In this case, the
counterfactual would be interpreted as P(good harvest | early frost,
no infestation).

Consider a different counterfactual: “What is the likelihood of
an early frost if there had been a poor tomato harvest?” (Remem-
ber that we know that there was neither an early frost nor an
infestation, and there was a good harvest.) According to the
intervention account, the intervention is on the poor harvest, which
would mean that we maintain the belief that there was neither an
early frost nor an infestation. The potential problem with this
account is that one might think the following: “if there had been a
poor harvest, there is a decent chance that it is due to an early
frost.” The intervention account does not allow for reasoning
“upstream.”

Hiddleston (2005) proposed another, more complicated, way to
represent counterfactuals that involves thinking about the possible
minimal changes to the causal network in which the counterfactual
is true, but all the other nodes are “minimally” different from their
actual states. In contrast to the intervention account, a minimal
change could involve changes in nodes “upstream” of the coun-
terfactual variable.

Rips (2010; see also Sloman & Lagnado, 2005) tested how
people interpret counterfactuals on a common effect structure.
Across a variety of conditions, Rips found that none of the strat-
egies (observations, interventions, or “minimal-networks”) by it-
self could account for all the results; he eventually proposed a
modified version of the minimal-networks approach. In sum, it is
not yet clear exactly how people interpret counterfactuals, and
there is still expert disagreement on the normative interpretation of
counterfactuals.

Conditional, “If . . . Then” Reasoning and
Acceptability of Logical Arguments

There is a large literature on people’s inferences involving
propositions stated in an “If . . . Then” syntactic format (Evans &
Over, 2004, provides an excellent introduction). Many such sen-
tences refer to causal relationships, and some philosophers and
experimentalists have proposed that conditional statements “If p,
then q,” are often interpreted probabilistically as P(g = 1lp = 1)
(Evans, Handley, & Over, 2003; Oberauver & Wilhelm, 2003;
Over, Hadjichristidis, Evans, Handley, & Sloman, 2007; see Ben-
nett, 2003, on “The Ramsey Test”).

Furthermore, the logical rules of inference (Modus Ponens,
Modus Tollens, Denying the Antecedent, and Affirming the Con-
sequent) can also be interpreted as probabilistic inferences instead
of logical. For example, consider the premise “If ¢ = 1, then e =
17 (i.e., C—E). “Affirming the consequent” is the inference “e =
1, therefore ¢ = 1.” Logically this inference is invalid; however,
consider how this inference might be viewed from causal structure
perspective (Fernbach & Erb, in press; see Liu, Lo, & Wu, 1996;
Oaksford, Chater, & Larkin, 2000, for other probabilistic ac-
counts). First, in instances when the premise “If ¢ = 1, then e =
1” refers to a causal relationship, C—E, one may extend the
structure with background knowledge and include P(c = 1) and S
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Figure 18. Causal structure for conditional “If . . . then” reasoning.

as well as other generative or inhibitory causes of E to form a
structure like that in Figure 18. Second, assessing the acceptability
of the inference “e = 1, therefore ¢ = 1” could be interpreted as
a request for the inference P(c = 1lle = 1). Thereby, the four
canonical forms of logical argumentation can be reframed as
conditional probability inferences. Table 6 maps between the log-
ical and probabilistic interpretations of these inferences and gives
mathematical derivations of the probabilistic inferences on the
structure in Figure 18. For comprehensibility, we talk about these
logical inferences as interchangeable with conditional probability
notation, even though many of the experiments actually had people
judge the validity or acceptability of the logical arguments.
Although not explicitly framed in terms of Causal Bayesian
Networks, a number of studies have examined the effect of ma-
nipulating various parameters of the causal structure, the number
or strength of alternative generative or inhibitory causes, on the
perceived validity of logical arguments. We use Sg and S; to
denote the total likelihood of alternative causes generating versus
inhibiting E. Higher Sy reflects lower necessity and higher S,
reflects lower sufficiency of the C—E relation. There are four
classic and robust findings (see superscript notation [*] in Table 6;
e.g., Cummins, 1995; Cummins, Lubart, Alksnis, & Rist, 1991; De

ROTTMAN AND HASTIE

Neys, Schaeken, & d’Ydewalle, 2003a; Quinn & Markovits,
1998). Increasing S, leads to (a) lower judgments of Modus Ponens
and (b) lower judgments of Modus Tollens. For example, given the
conditional from Cummins (1995), “If John studied hard, then he
did well on the test,” it is possible to think of many possible
disabling conditions (e.g., the test was very hard), which leads to
a lower endorsement of Modus Ponens “John studied hard . . .
therefore he did well on the test.” Additionally, increasing S leads
to (c) lower judgments of Denying the Antecedent and (d) lower
judgments of Affirming the Consequent. These classic findings
make perfect sense in terms of inferences on a causal network, and
Fernbach and Erb (in press) have proposed a causal network
framework to model such effects (although they used a slightly
different structure than Figure 18). (Note that these classic studies
predicted no effect of S5 on Modus Ponens and Modus Tollens and
no effect of S; on Denying the Antecedent and Affirming the
Consequent.)

This causal model account of conditional inference has a num-
ber of benefits. First, it clarifies the features of the causal scenario
that matter: the number, base rates, and strengths of the alternative
generative and inhibitory causes (Fernbach & Erb, in press). We
group these factors together as Sg and S;. In addition, one’s belief
in the integration function would be critical, although here we are
only discussing noisy-OR.

Second, this account makes many of the same predictions as
those made in the classic studies (e.g., Cummins, 1995, see the
superscript notation [*] in Table 6). In fact, it explains why S; is
predicted to have no effect on Affirming the Consequent; it falls
out of the equation in row 4. However, we note that some studies
have found a positive effect S; (Beller, 2006; De Neys, Schaeken,
& d’Ydewalle, 2002, Experiment 2, De Neys, Schaeken, &
d’Ydewalle, 2003b).

Third, this account makes three different predictions than the
standard ones (see the arrows in Table 6 not marked with a
superscript). First, increasing S should increase the acceptance
of MP, P(e = llc = 1). People sometimes ignore implicit
alternative generative causes for P(e = llc = 1) judgments (see
the C—E section), and Fernbach and Erb (in press) did not
include them in their model, although two studies found this

Table 6
Logical and Probabilistic Interpretations of the Acceptability of Arguments
Logic Probability
Influence
of
increasing
Logical name Inference Valid Inference Mathematical derivation Sg S
MP: Modus ponens c=1lre=1 Yes Ple = llc = 1) (S¢c + Sg — ScSe)1 — S) 1 l?
MT: Modus tollens e=0...¢c=0 Yes P(c = Ole = 0) | 1= (SctSe—ScS6)(1-S)) l l®
1/P(c=1)—(Sc+S5/P(c=1)=S:S5)(1-S))
DA: Deny antecedent c=0..¢e=0 No P(e = Olc = 0) 1—-8;(1-3S5) l® T
AC: Affirm consequent e=1.¢c=1 No P(c = lle = 1) Sct+S6—ScSg L —

Sct86/Pc=1)=S:56

Note.
# Denotes the classic effects.

.. stands for therefore. The arrows refer to an increase ( 1), decrease ( |, ), or no change (—) in the acceptance of the logical argument.
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effect (Beller, 2006; Thompson, 1994). Second, increasing S
should decrease the acceptance of Modus Tollens, P(c = Ole =
0). The effect is predicted to be small, and the reason is quite
complex. Normally once it is known that e = 0 then it is very
likely that ¢ = 0. But the stronger Sg is, then the more likely
that the alternative inhibitory causes were present, in which
case it is less certain that ¢ must have been absent (Cummins et
al., 1991; De Neys et al., 2002, Experiment 2; De Neys et al.,
2003b; Markovits & Handley, 2005, Experiment 1; see also
Cummins, 1995). Third, increasing S, should increase the ac-
ceptance of Denying the Antecedent, P(e = Olc = 0; Beller,
2006; De Neys et al., 2002, Experiment 2).

Our goal here is to point out how causal network models may be
useful for explaining conditional reasoning effects, with the ben-
efits of a formal yet flexible framework. The research is still
insufficient to provide a strong argument for or against the value of
this interpretation.

In a similar vein, Ali, Chater, and Oaksford (2011) have used
a causal network framework to model conditional reasoning,
comparing common cause versus common effect structures. For
example, one of the common effect scenarios had two condi-
tionals: “If I do not clean my teeth, then I get cavities” and “If
I eat lots of sugar, then I get cavities.” Then participants were
asked “I got a cavity . . . how likely is it that I did not clean my
teeth?” P(c, = lle = 1) and “I got a cavity and I ate lots of
sugar . . . how likely is it that I did not clean my teeth?” P(c, =
lle = 1,c, = 1). They found some of the effects predicted by
causal structures such as discounting, but they also found
some effects that are inconsistent with causal structures, such as
violations of the Markov Assumption, P(c, = 1) > P(c, = 1l
c, = 1).

In sum, there are some intriguing applications of causal net-
works to model the acceptability of logical arguments and condi-
tional reasoning. Although these approaches show promise, these
paradigms rely heavily upon the application of knowledge that
people have about the causal relationships as well as linguistic
pragmatics, which pose challenges for assessing the causal struc-
ture framework.

Diamond Structures

Diamond structures are unique in that there are two routes
from the cause to the effect, and both routes must be simulta-
neously considered when performing inference. We already
discussed a structure with two routes in the section on discount-
ing when the two causes are correlated. Here we use M, and M,
to refer to alternative mediators of the two routes (see Figure
19).

Reasoning About Both Routes Simultaneously

Meder et al. (2008) investigated whether people take M, into
account when inferring P(EIM,). To test this, they compared
two inferences, when M, is observed to be present, P(e = 1lm,
= 1), versus when one intervenes and sets M, to be present, P(e
= llset m;, = 1). If M, is observed to be present, then C and M,
are probably present, so P(e = 1lm, = 1) should be very high.
In contrast, when M, is intervened upon and set to 1, the
intervener has no knowledge of the state of C or M,; the best

3 When inferring E after
4 observing (or intervening
( C\; on) the state of M,,

people do use, but
insufficiently use the
direct route M, —E and

M,y the indirect route M,—C
—M,—E. They also do

use the prior of C, but not
as much as they should.

Figure 19. Summary of the P(EIM,) inference. See Figure 4 for nota-
tional conventions.

estimate of M, is its base rate. Thus, P(e = llset m; = 1) should
be lower than P(e = 1lm, = 1). Through the same logic, the
opposite pattern holds for observing versus setting m; = 0. In
sum, the following asymmetries should hold: P(e = 1lm, = 0)
< P(e = llset m; = 0) < P(e = llset m; = 1) < P(e = 1Im,
=1).

Meder et al. (2008; Experiment 1) told participants about the
diamond structure, and participants experienced a series of trials to
learn the parameters. Remarkably, participants’ answers to the
inference questions reflected the predicted asymmetries. These
results suggest that their participants understood the difference
between interventions and observations, understood that M, and
M, would be correlated for observations but not for interventions,
and used both M, and M, to infer E. In follow-up experiments,
Meder, Hagmayer, and Waldmann (2009) also demonstrated that
people’s inferences are sensitive to the base rate of C and the
strength of the causal relations.

Even though these studies did demonstrate the basic norma-
tive patterns, the inferences tended to be weaker (i.e., closer
to the middle of the scale) than expected. For example, in
Meder et al. (2008, Experiment 1), the difference between P(e
= 1lm, = 1) and P(e = 1lm, = 0) and should have been .78
(when converted to a probability scale). However, participants
inferred a difference of only .37. This could have been due to
underweighting the strength of M,, or underweighting any of
the three other causal strengths (see Figure 19). Additionally,
the difference between P(e = llset m; = 1) and P(e = llset m,
= () should have been .48, but participants inferred a difference
of only .15. This reflects an underweighting of the impact of M,
on E (see Figure 19).

Similar effects obtained in the 2009 study as well. Meder et
al. (2009, Experiment 2) examined how differences in the base
rate of C would affect inferences of P(e = llset m; = 0). When
M, is intervened upon and set to 0, the only possible cause of
E is M,, and the probability of E should be higher to the extent
that the base rate of C is higher. The manipulation of P(c = 1)
did produce a difference in the judgment of E, but the difference
was only about half as large as it should be (.15 vs. .30). In sum,
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these experiments systematically demonstrate that people do
use the parameters of a diamond model for inferring E, but in
every case, they seem not to use them as much as expected by
the normative model.

Counterfactuals in Diamond Structures

Meder, Hagmayer, and Waldman (2009) asked another question
that they called a “counterfactual intervention.” In the standard
“hypothetical intervention” question, the states of the variables are
not known before the intervention. However, in the counterfactual
intervention question, participants were told the state of M, before
it was manipulated, such as the following: “What is the probability
of E given that you saw that M, was absent and then you inter-
vened and made it present?” Because the state of M, was known to
be 0 before the intervention, one can infer that C and thus M, are
probably also 0. In this way, the counterfactual intervention question
requires reasoning about both routes (M,-E) and (M ,-C-M,-E).

Meder, Hagmayer, and Waldman (2009) found that people’s
inferences were only minimally different comparing standard in-
tervention questions and counterfactual interventions. This lack of
a difference could be interpreted as underweighting any or all of
the causal strengths along this route or just general confusion about
the question.

Intervening on Causal Structures to Produce
Desired Outcomes

So far our discussion has focused on inference for its own sake.
But, inferences also serve another purpose: They can help us
identify interventions that produce desired outcomes (Meder et al.,
2010; Sloman & Hagmayer, 2006). We can expand the standard
causal network framework introduced in the introduction with
utility nodes to represent the desirability of various events. In fact,
the “Profit from Tomatoes” node in our Farming Scenario is
essentially a utility node. Rationally, it would make sense to
choose interventions that maximize the utility over all the utility
nodes in the network.

Choosing an intervention to maximize the utility nodes of a
causal network requires two steps in addition to performing infer-
ences. First, instead of inferring the value of one node given an
intervention, one must infer the value of all the utility nodes for a
given intervention and sum across them. Second, one must choose
the intervention to maximize expected utility. This decision may
seem trivial, but given that people often exhibit probability match-
ing instead of maximization in choice paradigms, it is possible that
they will fail to maximize the utility of the network (Eberhardt &
Danks, 2011).

Nichols and Danks (2007, Experiment 1) taught people a com-
mon effect structure C,—E<—C,, in which C, was stronger than
C,. Participants could intervene on either C, or C, to try to
produce the E, which was tied to a monetary reward. Not surpris-
ingly, they were more likely to intervene on C,. Out of the
participants who intervened on C,, most of them incorrectly be-
lieved that C, was stronger than C,.

In a second experiment, Nichols and Danks taught participants
about a chain structure C—M—E. Intervening on M was more
likely to produce E than intervening on C; however, the “cost” of
intervening on M was greater than the “cost” of intervening on C,
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Figure 20. Choosing actions to maximize payoff P.

making the average expected payoff higher for C than M. Seventy-
eight percent of participants intervened on the variable that, ac-
cording to their beliefs about the network, would maximize their
expected payoff. However, 15% of participants still chose inter-
ventions that did not maximize expected payoff, according to their
own beliefs about the causal structure.

Hagmayer and Meder (2008, 2012; Meder & Hagmayer, 2009)
investigated a similar phenomenon with the structures in Figure
20. The square nodes represent possible interventions, the P node
represents an outcome to be maximized, and the plus signs denote
the size of the outcome given that a given combination of nodes (A,
and or B, and or C) is active. In Hagmayer and Meder’s (2012;
Experiment 3) study, participants first learned the causal structures
(either Figure 20a or 20b) by activating L or W 100 times and
observing whether A, B, or C became active and the value of P.
Afterward, participants were told that the A node was removed
from the network, and they had 10 opportunities to activate L or W
in order to maximize P.

Those who believed the structure to be the one in Figure 20a
almost always chose W, intervening on L would have no chance of
producing P now that A was removed from the network. However,
participants who believed the structure to be the one in Figure 20b
only chose L 55% of the time, even though they understood that L
still had a higher expected value than W. In sum, people’s beliefs
in the causal structure did have a large influence on their choices,
but they also did not choose interventions that would fully maxi-
mize the outcome according to their own beliefs. Probability
matching is a likely explanation.

These initial studies suggest that, for the most part, people use
their beliefs about causal structures to choose actions that will
increase payoffs. We speculate that when people confidently be-
lieve in a causal structure, they tend to maximize instead of
probability match (e.g., Taylor, Landy, & Ross, 2012). But, in the
real world, where people often choose interventions with incom-
plete knowledge of the relevant causal system, the probability
matching habit emerges.

General Discussion

In this review, we focused on studies in which people are given
a causal structure, learn the parameters, and then make inferences.
We started with a review of behavioral studies that examined
violations to the Markov Assumption. We then catalogued various
inferences that can be made on chain, common cause, one link,
common effect, and diamond structures. Finally, we discussed how
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people decide to intervene on causal structures in order to produce
a desired effect. In this General Discussion, we first discuss the
uses of a normative rational analysis. Then we summarize and
reorganize key results into two sections based on (a) violations of
the Markov Assumption and (b) conservative inferences or unde-
ruse of parameter information. We also discuss possible ap-
proaches to a more descriptive, semirational model.

The Uses of the Normative, Rational Analysis

The present review was motivated by the relatively recent
invention of a normative model for representing and calculating
the implications of a system of causal relationships. However,
there is no consensus on the value of normative, optimal, rational
models in the behavioral sciences. Indeed, the very nature of a
normative analysis is a matter of dispute. So, we provide a brief
discussion that clarifies our own views on this knotty bundle of
questions.

What is an optimal, rational model? Scientific, mathemati-
cal, and philosophical analyses produce models of real world
situations that can be used to guide actions to achieve goals in an
optimally efficient manner. In some cases, the goals are implicit
(e.g., logical truth-maintaining coherence; precise forecasts of the
operations of a mechanical system), and in others, the goals are
stated as part of the model of the situation (e.g., to trade-off
expected risk and returns at a designated rate in an investment).
Such normative models are evaluated with reference to their ac-
curacy or their usefulness in achieving outcomes in objective
physical, biological, or social realities. Some examples of norma-
tive models that have been used in the behavioral sciences are
elementary logic, probability and other mathematical theories,
utility theories and Game Theory in the von Neumann-
Morgenstern tradition, “ideal” models for identifying sensory stim-
ulus events, and physics laws of mechanics. For all of these
normative models there is close to unanimous consensus among
experts that the models are accurate descriptions of the relevant
domains of reality. The Bayesian Causal Networks framework is a
new candidate for a normative model to represent objective causal
systems.

Normative models can be contrasted with descriptive or psy-
chological models that attempt to explain and predict behavior by
proposing psychological mechanisms. Some theorists believe that
normative models are closely related to psychological-descriptive
models (e.g., many economists assume that a “rational man” model
provides a good description of the actual behavior of economic
agents; many behavioral ecologists believe that optimal models are
the best descriptive models for the behavior of foraging animals;
cf. Krebs & Davies, 1993). But, most psychologists believe that
there are significant differences between the predictions of norma-
tive models and actual behavior.

The first conceptual challenge facing behavioral researchers
who want to use normative models is to specify the application of
a normative framework to a behavioral task. In many cases the
identification of an optimal model is not obvious, so alternate
rational models must be entertained (see disputes in M. Jones &
Love, 2011, and discussion in Holyoak & Cheng, 2011). Examples
in the present context include maximizing the total payoff versus
maximizing the probability of a payoff when choosing an inter-
vention (e.g., Nichols & Danks, 2007), whether people interpret

the scenarios used in typical experiments to be atemporal or
temporal (Rottman & Keil, 2012), and whether people intuitively
believe that causes combine using noisy-OR or some other func-
tion. Even in the highly constrained environment of a psychology
experiment, there is always the potential for ambiguity about the
scenario, task, goals, and relevant prior knowledge. In sum, claim-
ing a model as optimal or rational for a particular task requires
justification and often requires making simplifying assumptions
about the task.

The special difficulty of defending a normative model for
causality. Identifying a normative framework for causal reason-
ing is particularly challenging because of its rich and diverse
nature. We talk (and think) fluently about many different domains
of causality including biological, mechanical, psychological, and
social causation: “The fruitworm infestation caused the poor to-
mato harvest”; “the icy highway caused the traffic accident™;
“Jill’s intelligence caused her to get a perfect score on the SAT
test.” We can comprehend the meaning of causal statements de-
spite a lack of understanding as to how they occurred (e.g., “God
caused the Red Sea to part”; “Fossil fuel emissions cause global
warming,” “Smoking causes lung cancer””). We think about causal
processes that unfold at many different time frames and orders of
magnitude, and we fluently reason about both single cause-effect
instances and statistical regularities.

Many find the Causal Networks formalism to be a useful nor-
mative framework of objective causation. However, there is still
much controversy about using Causal Networks as a foundation
for conceptualizing causation. First, there is less acceptance of its
status as a normative model than for other popular normative
systems (e.g., elementary mathematics, logic, probability, and me-
chanics). Second, Causal Networks are only a couple of decades
old and still changing at a higher rate than older, more established
normative systems. Third, there is more disagreement on meta-
physical assumptions concerning objective causation than there is
on referents of the other normative systems.

Uses of a normative analysis with no claims about its psy-
chologically descriptive validity. Several useful applications of
normative models involve no claims about relationships between
the normative and psychological-descriptive theories (cf. Garner,
1974, pp. 192-193). Normative frameworks provide a language to
describe experimental tasks and goals, to specify at least one
procedure for performing a task, and to determine standards for
accurate or optimal performance. For example, Morris and Lar-
rick’s (1995) analysis of discounting provided a language to dis-
cuss discounting [as the relationship between P(c, = 1), P(c, =
lle = 1), and P(c, = lle = 1,c, = 1)]. Their analysis also clarified
the “objectives” that were underspecified in the previous attribu-
tion theory literature; depending on the causal structure and pa-
rameters, P(c, = lle = l,c, = 1) should sometimes be greater
than, equal to, or less than P(c, = 1). Differences between the
normative “answers” and human performance are often conse-
quential. Knowing when humans are nonoptimal may be useful in
practical endeavors and in guiding the design of remedial proce-
dures. In the case of the present review, we believe it is important
to know what kinds of errors people are likely to make when they
reason intuitively or analytically, even in a controlled experimental
setting, about what’s causing what and how to use causal knowl-
edge to bring about desired outcomes.
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A closely related approach is to keep normative and descrip-
tive accounts separate, but to pursue a research program to map
the two levels onto each other. The most commonly cited
inspiration for this research tactic is David Marr’s (1982) three-
level framework, which distinguished between a Computational
Level (a functional analysis, often a normative model, including
the actor’s goals), an Algorithmic-Representational Level (the
descriptive-psychological model), and an Implementational
Level (a neural-biological model)—and which promoted formal
mappings between adjacent levels.

Normatively inspired descriptive models. Many behavioral
researchers go a step further and use normative models as an inspi-
ration for psychological-descriptive theories or principles (see J. R.
Anderson, 1990; J. R. Anderson & Milson, 1989, as exemplars). They
first complete a normative analysis of the task and then use that
analysis (with samples of behavioral data) to guide the invention of a
descriptive model. The most commonly mentioned justification for
this interaction between the two types of models is to note that
humans are selected by evolution and shaped by learning to excel at
tasks that are important to our survival, so that many of the normative
principles are likely to be “wired-in” genetically or learned from
individual experience as an adaptive strategy.

When applying a rational framework to empirical results, it is often
found that human minds are bounded or lazy in ways that prevent
them from performing the optimal calculations required for “full
rationality” (Gigerenzer, Todd, & The ABC Research Group, 1999;
Kahneman, 2003; Payne, Bettman, & Johnson, 1993; Shah & Oppen-
heimer, 2008; Simon, 1955). The notion that informal causal infer-
ence would follow shortcuts is especially plausible when one thinks
though all of the calculations that would be necessary for a sufficient
model of the optimal computation (Fernbach & Rehder, 2012; or see
the complex equations in this article). Because the application of
Causal Network models is so new, there are no full-fledged general
proposals for the manner in which the rational model should be
adjusted to be more descriptive. In the following sections, we cite
some proposals for parts of the problem.

The normative model is the descriptive model. The most
extreme approach is to say we don’t need a descriptive model
because we can predict behavior from only the normative model.
No one so far has explicitly proposed this claim for causal rea-
soning, although some researchers have come close, by emphasiz-
ing the correspondences between Bayesian networks and partici-
pants’ judgments (e.g., Krynski & Tenenbaum, 2007; Sloman &
Lagnado, 2005; Waldmann & Hagmayer, 2005). Yet we believe
that most researchers expect there will be some reliable differences
between normative and descriptive accounts (M. Jones & Love,
2011, and commentary). Our review refutes the strong claim with
several examples of consistent discrepancies between human judg-
ments and the implications of well-defined causal networks.

In the next sections, we discuss the two main deviations from
the normative model: violations of the Markov Assumption and
conservative or weak inferences. We also discuss possible modi-
fications to the normative model to make it more descriptive.

Summary of Main Results

The studies we have reviewed almost all had the goal of exam-
ining whether an experimental manipulation produced a significant
effect in the direction predicted by the normative model. We also

looked for patterns of the quantitative fit of the normative model,
such as conservative biases where the inference was “in the right
direction” but was too weak. We emphasized systematic patterns
across experiments rather than deviations in particular means in
single experiments. However, because many of these inferences
have been studied in only one or two experiments and often those
experiments were not designed to investigate the particular com-
parison we were interested in, some of our conclusions are edu-
cated judgment calls. We discuss these findings in terms of the
farming example used in the introduction, reprinted in Figure 21.

Violations of the Markov assumption. The Markov As-
sumption specifies which nodes should be ignored for a particular
inference, which simplifies reasoning. However, many studies
found violations of the Markov Assumption. For example, if one
knows that there was a poor tomato harvest (7), learning about an
early frost (F) should not have any impact on inferences about
profit (P), yet it did. Likewise, if one knows that there was an early
frost on the farm (F), learning that there was a poor cantaloupe
harvest or a good cantaloupe harvest (C) should not have any
bearing on whether there was a poor tomato harvest (7). Yet it did
here, too. Burnett (2004) also found bigger violations for closer
variables (e.g., F' would have a bigger effect than C on inferring P
even when the state of 7 is known).

Some of these violations can be explained through alternative
accounts that justify the apparent deviation with a rational or
adaptive interpretation such as imagining additional nodes in the
network or additional causal relationships outside those specified
by the experimenter (e.g., Burnett, 2004). Back to the farming
example, perhaps observing that there is a poor cantaloupe harvest
is a sign that there was not enough rain, a variable not represented
in the network, which might also cause a poor tomato harvest.
Everyday causal systems are more complex than those in the
experiments. Because of this complexity, some skeptics of the
Causal Networks approach for engineering and data mining
have argued that the Markov Assumption is unrealistically restric-
tive (Cartwright, 1999, 2001, 2002).

A more philosophical justification derives from the probabilistic
nature of causality in these experiments. When a cause occurs and
an effect does not (or vice versa), one interpretation implies that
there must be an additional (generative or inhibitory) cause(s) that
also influences the effect (Rottman, Ahn, & Luhmann, 2011).
More fundamentally, if people act as if we live in a Laplacean
world (i.e., if we know the state of everything in the universe then
it is possible to perfectly predict the future), any contradiction
between the causes and the predicted effects implies that there

Early Tomato
Frost (F) Fruitworm (W)
Poor Poor Tomato
Cantaloupe Harvest (T)

Harvest (C)

Small Profit from
Tomatoes (P)

Figure 21. Farming scenario.
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must be unknown factors. A person who conceives of causal
relationships in this manner would certainly interpret an experi-
menter’s description of a small set of probabilistically related
events as a subset of all relevant events. Believing that there are
unobserved causes is not a problem for the causal network frame-
work per se. But it is a problem if these unobserved relationships
result in additional correlations between observed variables. Ad-
mitting this possibility undermines the validity of the experimental
tests of the causal network framework, and it also challenges the
validity of the framework in all applications.

Our view is that there are enough violations of the Markov
independence condition, in cases where “importing” additional
causal links was highly implausible or unjustified, to force the
conclusion that humans reliably violate the principle. As noted
before, it is also informative that these additional correlations have
always been found to be positive; there is no reason a priori why
they would not be negative.

There are several potential explanations for these patterns of
reasoning. First, some people may engage in associative reasoning
(e.g., Rehder, 2012). Associative style reasoning implies that peo-
ple don’t distinguish the direction of causal relationships (such as
the difference between a common cause and common effect struc-
ture). Processes like second-order conditioning could potentially
explain why people think that screened-off variables are still
relevant. Alternatively, Hagmayer and Waldmann (2002) devel-
oped a constraint-satisfaction model of causal learning and rea-
soning. A characteristic of this model is that it is easy to learn
individual causal relationships but harder to understand entire
causal structures and the conditional and unconditional indepen-
dencies (e.g., the difference between common cause vs. common
effect structures). A related approach is to propose reasoning
“locally” on subsets of the graph or single causal relations at a time
(e.g., Fernbach & Sloman, 2009; Kruschke, 2006; Waldmann et
al., 2008). In sum, these persistent violations warrant considering
nonnormative consistency-seeking explanations.

Conservative inferences. Another result that has been re-
ported in many different studies is that people made less extreme
inferences than are implied by the parameters of the causal net-
works. “Base rate neglect” is the most obvious example of an
undersensitive inference. Consider the one-link structure: early
frost — poor cantaloupe harvest. One would expect the probabil-
ity of an early frost given a poor cantaloupe harvest to be higher
than the prior probability of an early frost, although this was not
always observed (Meder, Hagmayer, & Waldmann, 2009).

Consider the chain structure: early frost — poor tomato harvest
— small profit from tomatoes. What is the chance of a small profit
given an early frost? For analogous questions, Baetu and Baker
(2009) found that transitive inferences are not as strong as they
should be. Rehder and Kim (2010) asked their participants to infer
the marginal probability of small profit from tomatoes. Although
participants’ inferences were influenced by the appropriate param-
eters (the base rate of early frost and the strengths of the causal
links), they were not as sensitive as they should have been.

Consider the common cause structure: poor cantaloupe harvest
< early frost — poor tomato harvest. During years in which there
is a poor (vs. good) cantaloupe harvest, it is likely that there would
also be a poor (good) tomato harvest. In analogous situations in
which people separately learned about the two causal relationships,
they did not fully understand the extent to which effects of a

common cause were correlated (Hagmayer & Waldmann, 2000;
Perales et al., 2004).

Consider the common effect structure: early frost — poor
tomato harvest <— tomato fruitworm infestation. Learning that
there was a poor tomato harvest makes an infestation more likely,
but subsequently learning that there was an early frost suggests
that there was not an infestation; the frost “explains away” the poor
tomato harvest. Although “explaining away” is considered to be a
hallmark of causal reasoning, the existing research has found it to
be weaker than it should be, if present at all (Morris & Larrick,
1995; Rehder, 2012; Sussman & Oppenheimer, 2011). Fernbach et
al. (2011) asked participants questions analogous to “An early frost
occurred; what is the probability that there was a poor tomato
harvest?” Participants tended to ignore the possibility that an
infestation could also cause a poor tomato harvest.

Because Figure 21 does not have a diamond, we modified it (see
Figure 22). Meder et al. (2008) and Meder, Hagmayer, and Wald-
mann (2009) asked participants questions analogous to, “What is
the probability of a small total profit given that there is a poor
cantaloupe harvest?” implying that there probably was also an
early frost and probably also a poor tomato harvest. They also
asked the same question, “given that the cantaloupes were poi-
soned?” which implies nothing about an early frost or the tomato
harvest. Both of these inferences were closer to the middle of the
scale than expected, which could reflect insufficient use of the
parameters.

There are a number of possible explanations for conservative
inferences that derive from characteristics of the experimental
tasks. First, it is possible that even though participants in these
experiments were told the causal structure, they did not accept the
experimenter’s statement of the causal structure. If people are
uncertain about the causal structure they might perform inferences
over multiple possible structures (Meder, Mayrhofer, & Wald-
mann, 2009; see Schum & Martin, 1982, for a related problem in
law). However, many of the studies we review used novel vari-
ables, and it is not clear why participants would have rejected the
experimenters’ cover stories about the causal structure, especially
when the learning data also matched the causal structure.

Second, it is possible that people had not fully learned the param-
eters of the causal model; if they had observed more evidence, their
beliefs in the parameters might have been stronger. Meder, Hag-
mayer, and Waldmann (2009) proposed that their participants’ pa-
rameter estimates might have been influenced by a prior distribution

Early
Frost (F)

Poor Tomato
Harvest (7)

Poor Cantaloupe
Harvest (C)

Small Total
Profit (P)

Figure 22. Diamond farming scenario.
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(e.g., a uniform prior) that could have pulled inferences toward the
middle of the scale. However, other theorists have argued that par-
ticipants have nonuniform priors in mind. For example, Lu et al.
(2008; see also Yeung & Griffiths, 2011) suggested that people expect
causes to be either strong or nonexistent, but not moderately strong. If
people actually used these priors, then their inferences would be more
extreme than the standard analysis; yet, people’s inferences tend to be
more conservative.

There are two other pieces of evidence suggesting that conservative
inferences are not just due to insufficient or preasymptotic learning of
the parameters or to averaging over participants with extreme but
different judgments. First, the standard observation of base rate ne-
glect (e.g., predictive value of breast cancer given a positive mam-
mogram P(c = lle = 1); Eddy, 1982) occurs even when people are
explicitly told the parameters. Indeed, base rate neglect has tradition-
ally been found to be more extreme in situations in which the base
rates are explicitly stated, compared to when they are learned from
experience (Christensen-Szalanski & Beach, 1982; Koehler, 1996).
Second, some of the studies found conservative inferences even
compared to participants’ own stated beliefs in the parameters (e.g.,
Fernbach et al., 2011; Morris & Larrick, 1995). Thus, we conclude
that conservative inferences are caused by something more than
insufficient learning of the parameters.

Third, it is difficult to separate true conservative reasoning from
methodological artifacts associated with the rating scales used in
all of the studies that ask for numerical ratings. It is plausible that
some of the conservative habits are merely response biases pro-
duced by using response formats with a salient, “safe” or “com-
promise” midpoint. This artifact cannot be evaluated without sys-
tematic variations of the response scale formats, tests on inferences
that involve different regions on the scales, and performance-
contingent incentives.

Overall, some of the conservatism in judgments is likely due to
general habits of caution. But, we also believe that there are hints in
the conservative patterns of inferences that additional judgment habits
are involved. We think it is unlikely that deliberate reasoning pro-
cesses exactly map onto the Bayesian calculations. We conjecture that
anchor and insufficient adjustment habits are plausible psychologi-
cally (cf. Lopes, 1987). The problem with this interpretation is that it
simply relabels the observed results, without providing deeper under-
standing, unless the anchoring process is further specified.

Let’s walk through a speculation on anchoring strategies. Con-
sider inferences on the C—E structure. Suppose the following
causal parameters are provided via verbal-numerical instructions
[P(c = 1) = .30, P(e = llc = 1) = .80, P(e = 1llc = 0) = .40],
which imply P(e = 1) = .52. What are some of the plausible
anchor values for inferring P(e = 1)? (a) One anchor would be
zero; assume that £ is not occurring and then adjust upward for
causal forces that increase its chances of occurring [P(e = llc =
1) = .80 and P(e = llc = 0) = .40]. (b) Another anchor could be
the salient value P(e = 1llc = 1) = .80; then adjust down toward
P(c = lle = 0) = .40, or in the opposite direction. (c) Some people
might anchor on a midpoint between P(e = llc = 0) = .40 and
P(e = llc = 1) = .80, perhaps .60, and then adjust downward
given that P(c = 1) = .30. Note that these alternative anchoring
strategies produce a range of predictions: anchor on zero, which is
likely to produce a low rating, versus anchor on .80, which is likely
to produce a high rating. The predictions are blurred further by the

plausible assumption that different participants are likely to anchor
on different parameters.

We can also speculate about psychological processes when the
causal structure is learned from samples rather than declaratively
through words and numbers. For an inference like P(e = 1),
participants might assess the memory strength or frequency in
memory of (e = 1) experiences, in which case the assessment is
likely to be regressive with overestimated low frequencies and
underestimated high frequencies (Attneave, 1953; Zacks &
Hasher, 2002). For an inference like P(c = lle = 1), participants
could try to recall the percentage of (¢ = 1) experiences out of the
recalled set of (e = 1) experiences.

This discussion makes it obvious that anyone who wants to
make an empirical argument for an alternative to the Bayesian
calculation will have to be clear about the alternative calculations
that are proposed and increase the control and precision of the
experimental methods. In fact, we hope researchers proceed in this
fashion, as we do not believe that the humans’ explicit inferences
about causal relationships are fully Bayesian. We also believe that
some kind of serial averaging process is the most likely candidate
for an alternative calculation, given the vast number of averaging
results in the judgment literature and given that averaging, for most
parameter values in the research we have reviewed, produces
conservative final estimates.

We should also note a final complexity. One important aspect of
the weak causal inferences is that they seem to run against the Markov
violations. Take the structure C—M—E. A typical violation of the
Markov assumption involves inferring P(e = 1lm = 1,c = 1) > P(e
= 1llm = 1,c = 0). The two judgments are too far apart, when they
should be equal; C affects the inference about E when it should
have been “screened off” by the knowledge of the mediator (M). In
contrast, a standard too-weak transitive inference involves infer-
ring that P(e = llc = 1) and P(e = llc = 0) are foo close together.
The only difference between these two sets of findings is whether
the state of M is known or not. Recall that some researchers (e.g.,
Rehder & Burnett, 2005) proposed adding a “hidden mechanism”
node to explain the Markov Violations, but adding such a node
would lead to overly strong rather than weak transitive inference.
The implication is that it is doubtful that there is a unitary rational
explanation for these two results.

A potential way to model these two findings is with a linear
averaging approach. When inferring E, M gets most of the weight, but
C still gets some weight. This approach could potentially capture the
fact that C is weighted too little for transitive inferences, but it is
weighted too much (it should have zero weight) when M is known.
This approach might also be useful for explaining how people infer M
on the chain C—M—E or C on the common cause E,<—C—E,. There
is not much research on how normatively people make judgments like
P(m = llc = l,e = 1), but it is likely that people use some sort of
linear averaging instead of a Bayesian likelihood ratio calculation
(e.g., N. H. Anderson, 1996; Lopes, 1987).

Summary of Possible Psychological Processes Involved
in Causal Inference

Here we summarize some of the judgment problems faced in
causal inference and present some potential cognitive process
explanations; references appear in sections above.
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Causal structures are complex. People may have difficulty
understanding all the dependencies and conditional independen-
cies implied by structures with multiple variables even if they
understand each of the individual links. For example, explaining
away and the independencies implied by the Markov assumption
are not necessarily intuitive. Constraint satisfaction and associative
reasoning strategies may provide some people with alternative
representations for the structures. “Local” reasoning on parts of the
structure could also explain why people have difficulty understand
properties of the structure that emerge when reasoning about three
or more nodes simultaneously.

Too much information and integration is confusing.
Performing the full Bayesian calculations requires reasoning about
many nodes simultaneously, understanding how causes combine in
complex ways (e.g., noisy-OR rule), and understanding how to use
multiple parameters for a single inference. Even though anchoring
is more of a description than a process model, it suggests a way to
reduce complexity by focusing primarily on one piece of informa-
tion and then sequentially adjusting for other pieces of informa-
tion.

Too much uncertainty. When one is uncertain about the
causal structure or strengths, one might use “safe” defaults for
judgments, such as the middle of the scale, or potentially rely on
base rates with little updating. Uncertainty can also be built into
the normative framework by integrating over possible structures or
conditioning on sample size.

Limited memory. When one experiences the probabilistic
relationships between multiple variables, the number of cells in the
joint probability table (e.g., Table 2) required to represent those
experiences becomes very large. Focusing on the parameters in-
stead of the contingencies simplifies the reasoning process, al-
though we do not know whether people naturally reason using the
parameters or the raw experiences. Either way, memory biases
could impact the assessment of parameters or judgments based
directly on a mental version of the joint probabilities.

In sum, there are a variety of potential cognitive strategies and
biases that could affect inferences on causal structures. We hope
that summarizing these possibilities will encourage future re-
search.

Conclusions

The Bayesian Probabilistic Causal Networks framework has
stimulated a productive research program on human inferences on
causal networks. Such inferences have clear analogues in everyday
judgments about social attributions, medical diagnosis and treat-
ment, legal reasoning, and in many other domains involving causal
cognition. So far, research suggests two persistent deviations from
the normative model. People’s inferences of one event are often
inappropriately influenced by other events that are normatively
irrelevant; they are unconditionally independent or are “screened
off” by intervening nodes. At the same time, people’s inferences
tend to be weaker than are warranted by the normative framework.

These conclusions do not sharply constrain the form of a de-
scriptive model for causal reasoning. At one end of the spectrum,
some psychologists may want to ignore the normative framework
(although we hope they would still consider its value as a model
for objective causation). Such a theorist might want to “work up”
from the lower implementational level, such as associative net-

works or constraint satisfaction networks, which can mimic many
of the properties of normative Causal Networks but are not com-
mitted to the strict normative calculus.

Another option is to start with the normative Causal Networks
and to relax some of the assumptions. Some candidates for “re-
laxation” include (a) shifting from exhaustive hypothesis spaces to
attention-limited subsets of cognitively salient hypotheses, (b)
considering alternative prior belief probability distributions (e.g.,
Lu et al., 2008), (c) limiting updating inferences to a subset of
network nodes (presumably because of working memory limits,
attention limits, pragmatics, or proximity; e.g., Burnett, 2004), (d)
conditioning confidence in experimentally learned parameter val-
ues on sample size or credibility to more realistically represent
uncertainty about the network (cf. Winkler & Murphy, 1973), and
(e) experimentally verifying that the participants in experiments
have not added plausible nodes or links to the experimenter-
defined causal system (e.g., Burnett, 2004).

Causal reasoning is one dramatic example of an exceptionally
sophisticated system of inferences that approximates many prop-
erties of normative belief systems. The research we reviewed has
shown that when the normative calculations of causal networks
imply that the probability of an event should increase, the judg-
ments usually go up; when they imply a decrease, judgments
usually go down. At the same time, the experimental literature
contains some substantial and systematic discrepancies between
human inferences and those of the normative Causal Network
framework. Empirical and theoretical research on these discrepan-
cies is an important frontier for our exploration of human cognition
and human nature more generally.

References

Ali, N., Chater, N., & Oaksford, M. (2011). The mental representation of
causal conditional inference: Causal models or mental models. Cogni-
tion, 119, 403—418. doi:10.1016/j.cognition.2011.02.005

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ:
Erlbaum.

Anderson, J. R., & Milson, R. (1989). Human memory: An adaptive
perspective. Psychological Review, 96, 703-719. doi:10.1037/0033-
295X.96.4.703

Anderson, N. H. (1996). A functional theory of cognition. Mahwah, NJ:
Erlbaum.

Attneave, F. (1953). Psychological probability as a function of experienced
frequency. Journal of Experimental Psychology, 46, 81-86. doi:
10.1037/h0057955

Baetu, 1., & Baker, A. G. (2009). Human judgments of positive and
negative causal chains. Journal of Experimental Psychology: Animal
Behavior Processes, 35, 153—168. doi:10.1037/a0013764

Bar-Hillel, M. (1980). The base-rate fallacy in probability judgment. Acta
Psychologica, 44, 211-233. doi:10.1016/0001-6918(80)90046-3

Beller, S. (2006). What we can learn from causal conditional reasoning
about the naive understanding of causality. In R. Sun & N. Miyake
(Eds.), Proceedings of the Twentieth Annual Conference of the Cognitive
Science Society (pp. 59—64). Mahwah, NJ: Erlbaum.

Bennett, J. (2003). A philosophical guide to counterfactuals. Oxford,
England: Oxford University Press. doi:10.1093/0199258872. 001. 0001

Blaisdell, A. P., Sawa, K., Leising, K. J., & Waldmann, M. R. (2006).
Causal reasoning in rats. Science, 311, 1020-1022. doi:10.1126/science
1121872

Buchanan, D. W., & Sobel, D. M. (2011). Children posit hidden causes to



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

28 ROTTMAN AND HASTIE

explain causal variability. L. Carlson, C. Holscher, & T. Shipley (Eds. ),
Proceedings of the 33rd Annual Meeting of the Cognitive Science
Society (pp. 3098-3103). Austin, TX: Cognitive Science Society.

Burnett, R. C. (2004). Inference from complex causal models (Doctoral
dissertation). Retrieved from ProQuest Dissertations and Theses. (UMI
No. 3156566)

Cartwright, N. (1999). The dappled world: A study of the boundaries of
science. Cambridge, England: Cambridge University Press. doi:10.1017/
CB09781139167093

Cartwright, N. (2001). What is wrong with Bayes nets? Monist, 84,
242-264. doi:10.5840/monist20018429

Cartwright, N. (2002). Against modularity, the causal Markov condition,
and any link between the two. British Journal for the Philosophy of
Science, 53, 411-453. doi:10.1093/bjps/53.3.411

Charniak, E. (1991). Bayesian networks without tears. Al Magazine, 12(4),
50-63.

Cheng, P. W. (1997). From covariation to causation: A causal power
theory. Psychological Review, 104, 367-405. doi:10.1037/0033-295X
.104.2.367

Christensen-Szalanski, J. J., & Beach, L. R. (1982). Experience and the
base-rate fallacy. Organizational Behavior and Human Performance,
29, 270-278. doi:10.1016/0030-5073(82)90260-4

Cummins, D. D. (1995). Naive theories and causal deduction. Memory &
Cognition, 23, 646—-658. doi:10.3758/BF03197265

Cummins, D. D., Lubart, T., Alksnis, O., & Rist, R. (1991). Conditional
reasoning and causation. Memory & Cognition, 19, 274-282. doi:
10.3758/BF03211151

Danks, D. (2009). The psychology of causal perception and reasoning. In
H. Beebee, C. Hitchcock, & P. Menzies (Eds.), Oxford handbook of
causation (pp. 447-470). Oxford, England: Oxford University Press.
doi:10.1093/0xfordhb/9780199279739.003.0022

De Neys, W., Schaeken, W., & d’Ydewalle, G. (2002). Causal conditional
reasoning and semantic memory retrieval: A test of the semantic mem-
ory framework. Memory & Cognition, 30, 908-920. doi:10.3758/
BF03195776

De Neys, W., Schaeken, W., & d’Ydewalle, G. (2003a). Causal conditional
reasoning and strength of association: The disabling condition case.
European Journal of Cognitive Psychology, 15, 161-176. doi:10.1080/
09541440244000058

De Neys, W., Schaeken, W., & d’Ydewalle, G. (2003b). Inference sup-
pression and semantic memory retrieval: Every counterexample counts.
Memory & Cognition, 31, 581-595. doi:10.3758/BF03196099

Dickinson, A., Shanks, D., & Evenden, J. (1984). Judgment of act-outcome
contingency: The role of selective attribution. The Quarterly Journal of
Experimental Psychology A: Human Experimental Psychology, 36, 29—
50.

Eberhardt, F., & Danks, D. (2011). Confirmation in the cognitive sciences:
The problematic case of Bayesian models. Minds and Machines, 21,
389-410. doi:10.1007/s11023-011-9241-3

Eddy, D. M. (1982). Probabilistic reasoning in clinical medicine: Problems
and opportunities. In D. Kahneman, P. Slovic, & A. Tversky (Eds.),
Judgment under uncertainty: Heuristics and biases (pp. 249-267). Cam-
bridge, England: Cambridge University Press.

Evans, J. St. B. T., Handley, S. J., & Over, D. E. (2003). Conditionals and
conditional probability. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 29, 321-335. doi:10.1037/0278-7393.29.2.321

Evans, J. St. B. T., & Over, D. E. (2004). If. Oxford, England: Oxford
University Press. doi:10.1093/acprof:0s0/9780198525134.001.0001

Fernbach, P. M., Darlow, A., & Sloman, S. A. (2011). Asymmetries in
predictive and diagnostic reasoning. Journal of Experimental Psychol-
ogy: General, 140, 168-185. doi:10.1037/a0022100

Fernbach, P. M., & Erb, C. D. (2013). A quantitative causal model theory
of conditional reasoning. Journal of Experimental Psychology: Learn-

ing, Memory, and Cognition. Advance online publication. doi:10.1037/
a0031851

Fernbach, P. M., & Rehder, B. (2013). Cognitive shortcuts in causal
inference. Argument & Computation, 4, 64—88. doi: 10.1080/19462166
.2012.682655.

Fernbach, P. M., & Sloman, S. A. (2009). Causal learning with local
computations. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 35, 678—693. doi:10.1037/a0014928

Garner, W. R. (1974). The processing of information and structure. Po-
tomac, MD: Erlbaum.

Gelman, A., & Meng, X.-L. (Eds.). (2004). Applied Bayesian modeling and
causal inference from incomplete data perspectives. New York, NY:
Wiley. doi:10.1002/0470090456

Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reason-
ing without instruction: Frequency formats. Psychological Review, 102,
684-704. doi:10.1037/0033-295X.102.4.684

Gigerenzer, G., Todd, P. M., & The ABC Research Group. (1999). Simple
heuristics that make us smart. New York, NY: Oxford University Press.

Glymour, C. (2001). The mind’s arrows: Bayes nets and graphical causal
models in psychology. Cambridge, MA: MIT Press.

Gopnik, A., Glymour, C., Sobel, D. M., Schulz, L. E., Kushnir, T., &
Danks, D. (2004). A theory of causal learning in children: Causal maps
and Bayes nets. Psychological Review, 111, 3-32. doi:10.1037/0033-
295X.111.1.3

Griffiths, T. L., & Tenenbaum, J. B. (2005). Structure and strength in
causal induction. Cognitive Psychology, 51, 334-384. doi:10.1016/j
.cogpsych.2005.05.004

Griffiths, T. L., & Tenenbaum, J. B. (2009). Theory-based causal induc-
tion. Psychological Review, 116, 661-716. doi:10.1037/a0017201

Hagmayer, Y., & Meder, B. (2008). Causal learning through repeated
decision making. In B. C. Love, K. McRae, & V. M. Sloutsky (Eds.),
Proceedings of the 30th Annual Conference of the Cognitive Science
Society (pp. 179-184). Austin, TX: Cognitive Science Society.

Hagmayer, Y., & Meder, B. (2012). Repeated causal decision making.
Journal of Experimental Psychology: Learning, Memory, and Cogni-
tion. Advance online publication. doi:10.1037/a0028643

Hagmayer, Y., & Sloman, S. (2009). Decision makers conceive of their
choices as interventions. Journal of Experimental Psychology: General,
138, 22-38. doi:10.1037/a0014585

Hagmayer, Y., & Waldmann, M. R. (2000). Simulating causal models: The
way to structural sensitivity. In L. R. Gleitman & A. K. Joshi (Eds.),
Proceedings of the Twenty-Second Annual Conference of the Cognitive
Science Society (pp. 214-219). Austin, TX: Cognitive Science Society.

Hagmayer, Y., & Waldmann, M. R. (2002). A constraint satisfaction model
of causal learning and reasoning. In W. D. Gray & C. D. Schunn (Eds.),
Proceedings of the Twenty-Fourth Annual Conference of the Cognitive
Science Society (pp. 405-410). Mahwah, NJ: Erlbaum.

Hagmayer, Y., & Waldmann, M. R. (2007). Inferences about unobserved
causes in human contingency learning. Quarterly Journal of Experimen-
tal Psychology, 60, 330-355. doi:10.1080/17470210601002470

Hattori, M., & Oaksford, M. (2007). Adaptive non-interventional heuristics
for covariation detection in causal induction: Model comparison and
rational analysis. Cognitive Science, 31, 765-814. doi:10.1080/
03640210701530755

Hiddleston, E. (2005). A causal theory of counterfactuals. Noiis, 39,
632-657. doi:10.1111/j.0029-4624.2005.00542.x

Holyoak, K. J., & Cheng, P. W. (2011). Causal learning and inference as
a rational process: The new synthesis. Annual Review of Psychology, 62,
135-163. doi:10.1146/annurev.psych.121208.131634

Jara, E., Vila, J., & Maldonado, A. (2006). Second-order conditioning of
human causal learning. Learning and Motivation, 37, 230-246. doi:
10.1016/j.1mot.2005.12.001



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

REASONING ABOUT CAUSAL RELATIONSHIPS 29

Jenkins, H. M., & Ward, W. C. (1965). Judgment of contingency between
responses and outcomes. Psychological Monographs: General and Ap-
plied, 79, 1-17. doi:10.1037/h0093874

Jensen, F. J., & Nielsen, T. D. (2007). Bayesian networks and decision
graphs. New York, NY: Springer-Verlag. doi:10.1007/978-0-387-
68282-2

Jones, E. E., & Harris, V. A. (1967). The attribution of attitudes. Journal
of Experimental Social Psychology, 3, 1-24. doi:10.1016/0022-
1031(67)90034-0

Jones, M., & Love, B. C. (2011). Bayesian fundamentalism or enlighten-
ment? On the explanatory status and theoretical contributions of Bayes-
ian models of cognition. Behavioral and Brain Sciences, 34, 169—188.
doi:10.1017/S0140525X10003134

Kahneman, D. (2003). A perspective on judgment and choice: Mapping
bounded rationality. American Psychologist, 58, 697-720. doi:10.1037/
0003-066X.58.9.697

Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment
of representativeness. Cognitive Psychology, 3, 430—454. doi:10.1016/
0010-0285(72)90016-3

Khemlani, S. S., & Oppenheimer, D. M. (2010). When one model casts
doubt on another: A levels-of-analysis approach to causal discounting.
Psychological Bulletin, 137, 195-210. doi:10.1037/a0021809

Kim, N. S., Luhmann, C. C,, Pierce, M. L., & Ryan, M. M. (2009). The
conceptual centrality of causal cycles. Memory & Cognition, 37, 744—
758. doi:10.3758/MC.37.6.744

Koehler, J. J. (1996). The base rate fallacy reconsidered: Descriptive,
normative, and methodological challenges. Behavioral and Brain Sci-
ences, 19, 1-17. doi:10.1017/S0140525X00041157

Krebs, J. R., & Davies, N. B. (1993). An introduction to behavioural
ecology (4th ed.). Oxford, England: Blackwell.

Kruschke, J. K. (2006). Locally Bayesian learning with applications to
retrospective revaluation and highlighting. Psychological Review, 113,
677-699. doi:10.1037/0033-295X.113.4.677

Krynski, T. R., & Tenenbaum, J. B. (2007). The role of causality in
judgment under uncertainty. Journal of Experimental Psychology: Gen-
eral, 136, 430—450. doi:10.1037/0096-3445.136.3.430

Lagnado, D. A., & Sloman, S. (2004). The advantage of timely interven-
tion. Journal of Experimental Psychology: Learning, Memory, and Cog-
nition, 30, 856—876. doi:10.1037/0278-7393.30.4.856

Lagnado, D. A., & Sloman, S. A. (2006). Time as a guide to cause. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 32,
451-460. doi:10.1037/0278-7393.32.3.451

Lagnado, D. A., Waldmann, M. R., Hagmayer, Y., & Sloman, S. A. (2007).
Beyond covariation: Cues to causal structure. In A. Gopnik & L. Schulz
(Eds.), Causal learning: Psychology, philosophy, and computation (pp.
154-172). Oxford, England: Oxford University Press. doi:10.1093/
acprof:0s0/9780195176803.003.0011

Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with
probabilities on graphical structures and their application to expert
systems. Journal of the Royal Statistical Society: Series B. Methodolog-
ical, 50, 157-224.

Liu, I, Lo, K., & Wu, J. (1996). A probabilistic interpretation of “if—then”.
The Quarterly Journal of Experimental Psychology A: Human Experi-
mental Psychology, 49, 828 —844.

Lopes, L. L. (1987). Procedural debiasing. Acta Psychologica, 64, 167—
185. doi:10.1016/0001-6918(87)90005-9

Lu, H., Yuille, A. L., Liljeholm, M., Cheng, P. W., & Holyoak, K. J.
(2008). Bayesian generic priors for causal learning. Psychological Re-
view, 115, 955-984. doi:10.1037/a0013256

Luhmann, C. C., & Ahn, W. (2007). BUCKLE: A model of unobserved
cause learning. Psychological Review, 114, 657-677. doi:10.1037/0033-
295X.114.3.657

Markovits, H., & Handley, S. (2005). Is inferential reasoning just proba-
bilistic reasoning in disguise? Memory & Cognition, 33, 1315-1323.
doi:10.3758/BF03193231

Marr, D. (1982). Vision: A computational investigation into human repre-
sentation and processing of visual information. San Diego, CA: Free-
man.

Mayrhofer, R., Goodman, N. D., Waldmann, M. R., & Tenenbaum, J. B.
(2008). Structured correlation from the causal background. In V. Slout-
sky, B. Love, & K. McRae (Eds.), Proceedings of the Thirtieth Annual
Conference of the Cognitive Science Society (pp. 303-308). Austin, TX:
Cognitive Science Society.

Mayrhofer, R., Hagmayer, Y., & Waldmann, M. R. (2010). Agents and
causes: A Bayesian error attribution model of causal reasoning. In R.
Camtrabone & S. Ohlsson (Eds.), Proceedings of the Thirty-Second
Annual Conference of the Cognitive Science Society. Austin, TX: Cog-
nitive Science Society.

Meder, B., Gerstenberg, T., Hagmayer, Y., & Waldmann, M. R. (2010).
Observing and intervening: Rational and heuristic models of causal
decision making. The Open Psychology Journal, 3, 119-135.

Meder, B., & Hagmayer, Y. (2009). Causal induction enables adaptive
decision making. In N. A. Taatgen & H. van Rijn (Eds.), Proceedings of
the 31st Annual Conference of the Cognitive Science Society (Vol. 70,
pp. 1651-1656). Austin, TX: Cognitive Science Society.

Meder, B., Hagmayer, Y., & Waldmann, M. R. (2008). Inferring interven-
tional predictions from observational learning data. Psychonomic Bulle-
tin & Review, 15, 75-80. doi:10.3758/PBR.15.1.75

Meder, B., Hagmayer, Y., & Waldmann, M. R. (2009). The role of learning
data in causal reasoning about observations and interventions. Memory
& Cognition, 37, 249-264. doi:10.3758/MC.37.3.249

Meder, B., Mayrhofer, R., & Waldmann, M. R. (2009). A rational model
of elemental diagnostic inference. In N. A. Taatgen & H. van Rijn
(Eds.), Proceedings of the 31st Annual Conference of the Cognitive
Science Society (pp. 2176-2181). Austin, TX: Cognitive Science Soci-
ety.

Morris, M. W., & Larrick, R. P. (1995). When one cause casts doubt on
another: A normative analysis of discounting in causal attribution. Psy-
chological Review, 102, 331-355. doi:10.1037/0033-295X.102.2.331

Nichols, W., & Danks, D. (2007). Decision making using learned causal
structures. In D. McNamara & G. Trafton (Eds.), Proceedings of the
29th Annual Meeting of the Cognitive Science Society (pp. 1343—1348).
Austin, TX: Cognitive Science Society.

Novick, L. R., & Cheng, P. W. (2004). Assessing interactive causal
influence. Psychological Review, 111, 455-485. doi:10.1037/0033-
295X.111.2.455

Oaksford, M., Chater, N., & Larkin, J. (2000). Probabilities and polarity
biases in conditional inference. Journal of Experimental Psychology
Learning, Memory, and Cognition, 26, 883—899. doi:10.1037/0278-
7393.26.4.883

Oberauver, K., & Wilhelm, O. (2003). The meaning(s) of conditionals:
Conditional probabilities, mental models and personal utilities. Journal
of Experimental Psychology: Learning, Memory, and Cognition, 29,
680—-693. doi:10.1037/0278-7393.29.4.680

Over, D. E., Hadjichristidis, C., Evans, J. St. B. T., Handley, S. J., &
Sloman, S. A. (2007). The probability of causal conditionals. Cognitive
Psychology, 54, 62-97. doi:10.1016/j.cogpsych.2006.05.002

Payne, J. W., Bettman, J. R., & Johnson, E. J. (1993). The adaptive
decision maker. New York, NY: Cambridge University Press. doi:
10.1017/CB0O9781139173933

Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo,
CA: Morgan Kaufmann.

Pearl, J. (2000). Causality: Models, reasoning, and inference. Cambridge,
England: Cambridge University Press.



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

30 ROTTMAN AND HASTIE

Perales, J., Catena, A., & Maldonado, A. (2004). Inferring non-observed
correlations from causal scenarios: The role of causal knowledge. Learn-
ing and Motivation, 35, 115-135. doi:10.1016/S0023-9690(03)00042-0

Quinn, S., & Markovits, H. (1998). Conditional reasoning, causality, and
the structure of semantic memory: Strength of association as a predictive
factor for content effects. Cognition, 68, B93-B101. doi:10.1016/S0010-
0277(98)00053-5

Rehder, B. (2006). Human deviations from normative causal reasoning.
Poster session presented at the 28th Annual Conference of the Cognitive
Science Society, Vancouver, British Columbia, Canada.

Rehder, B. (2011). Reasoning with conjunctive causes. In L. Carlson, C.
Holscher, & T. F. Shipley (Eds.), Proceedings of the 33rd Annual
Conference of the Cognitive Science Society. Boston, MA: Cognitive
Science Society.

Rehder, B. (2012). Independence and nonindependence in human causal
reasoning. Manuscript submitted for publication.

Rehder, B., & Burnett, R. C. (2005). Feature inference and the causal
structure of categories. Cognitive Psychology, 50, 264-314. doi:
10.1016/j.cogpsych.2004.09.002

Rehder, B., & Hastie, R. (2001). Causal knowledge and categories: The
effect of causal beliefs on categorization, induction, and similarity.
Journal of Experimental Psychology: General, 130, 323-360. doi:
10.1037/0096-3445.130.3.323

Rehder, B., & Kim, S. (2010). Causal status and coherence in causal-based
categorization. Journal of Experimental Psychology: Learning, Memory,
and Cognition, 36, 1171-1206. doi:10.1037/a0019765

Rehder, B., & Martin, J. B. (2011). A generative model of causal cycles. In
L. Carlson, C. H6lscher, & T. F. Shipley (Eds.), Proceedings of the 33rd
Annual Conference of the Cognitive Science Society. Austin, TX: Cog-
nitive Science Society.

Reips, U.-D., & Waldmann, M. R. (2008). When learning order affects
sensitivity to base rates. Experimental Psychology, 55, 9-22. doi:
10.1027/1618-3169.55.1.9

Rips, L. J. (2010). Two causal theories of counterfactual conditionals.
Cognitive Science, 34, 175-221. doi:10.1111/j.1551-6709.2009.01080.x

Rottman, B. M., Ahn, W., & Luhmann, C. C. (2011). When and how do
people reason about unobserved causes? In P. Illari, F. Russo, & J.
Williamson (Eds.), Causality in the sciences (pp. 150—183). Oxford,
England: Oxford University Press. doi:10.1093/acprof:oso/
9780199574131.003.0008

Rottman, B. M., & Keil, F. C. (2012). Causal structure learning over time:
Observations and interventions. Cognitive Psychology, 64, 93—125. doi:
10.1016/j.cogpsych.2011.10.003

Schum, D. A., & Martin, A. W. (1982). Formal and empirical research on
cascaded inference in jurisprudence. Law & Society Review, 17, 105—
152. doi:10.2307/3053534

Shah, A. K., & Oppenheimer, D. M. (2008). Heuristics made easy: An
effort-reduction framework. Psychological Bulletin, 134, 207-222. doi:
10.1037/0033-2909.134.2.207

Simon, H. A. (1955). A behavioral model of rational choice. Quarterly
Journal of Economics, 69, 99—-118. doi:10.2307/1884852

Sloman, S. A. (2005). Causal models: How we think about the world and
its alternatives. Oxford, England: Oxford University Press.

Sloman, S. A., & Hagmayer, Y. (2006). The causal psycho-logic of choice.
Trends in Cognitive Sciences, 10, 407-412. doi:10.1016/j.tics.2006.07
.001

Sloman, S. A., & Lagnado, D. A. (2005). Do we “do”? Cognitive Science,
29, 5-39. doi:10.1207/s15516709¢c0g2901_2

Spellman, B. A. (1996). Acting as intiutive scientists: Contingency judg-
ments are made while controlling for alternative potential causes. Psy-
chological Science, 7, 337-342. doi:10.1111/j.1467-9280.1996
.tb00385.x

Spirtes, P., Glymour, C., & Scheines, R. (1993). Causation, prediction, and
search. New York, NY: Springer-Verlag. doi:10.1007/978-1-4612-
2748-9

Steyvers, M., Tenenbaum, J. B., Wagenmakers, E.-J., & Blum, B. (2003).
Inferring causal networks from observations and interventions. Cogni-
tive Science, 27, 453—489. doi:10.1207/s15516709c0g2703_6

Sussman, A. B., & Oppenheimer, D. (2011). A causal model theory of
judgment. In C. Holscher, L. Carlson, & T. Shipley (Eds.), Proceedings
of the 33rd Annual Conference of the Cognitive Science Society (pp.
1703-1708). Austin, TX: Cognitive Science Society.

Taylor, E. G., Landy, D. H., & Ross, B. H. (2012). The effect of expla-
nation in simple binary prediction tasks. The Quarterly Journal of
Experimental Psychology, 65, 1361-1375. doi:10.1080/17470218.2012
.656664

Thompson, V. A. (1994). Interpretational factors in conditional reasoning.
Memory & Cognition, 22, 742-758. doi:10.3758/BF03209259

von Sydow, M., Hagmayer, Y., Meder, B., & Waldmann, M. R. (2010).
How causal reasoning can bias empirical evidence. In R. Camtrabone &
S. Ohlsson (Eds.), Proceedings of the Thirty-Second Annual Conference
of the Cognitive Science Society (Vol. 6, pp. 2087-2092). Austin, TX:
Cognitive Science Society.

von Sydow, M., Meder, B., & Hagmayer, Y. (2009). A transitivity heuristic
of probabilistic causal reasoning. In N. A. Taatgen & H. van Rijn (Eds.),
Proceedings of the 31st Annual Conference of the Cognitive Science
Society (Vol. 1, pp. 803—808). Amsterdam, the Netherlands: Cognitive
Science Society.

Waldmann, M. R. (1996). Knowledge-based causal induction. In D. R.
Shanks, K. L. Holyoak, & D. L. Medin (Eds.), The psychology of
learning and motivation (Vol. 34, pp. 47-88). San Diego, CA: Aca-
demic Press.

Waldmann, M. R. (2007). Combining versus analyzing multiple causes:
How domain assumptions and task context affect integration rules.
Cognitive Science, 31, 233-256. doi:10.1080/15326900701221231

Waldmann, M. R., Cheng, P. W., Hagmayer, Y., & Blaisdell, A. P. (2008).
Causal learning in rats and humans: A minimal rational model. In N.
Chatern & M. Oaksford (Eds.), The probabilistic mind: Prospects for
Bayesian cognitive science (pp. 453—484). Oxford, England: Oxford
University Press. doi:10.1093/acprof:0s0/9780199216093.003.0020

Waldmann, M. R., & Hagmayer, Y. (2001). Estimating causal strength:
The role of structural knowledge and processing effort. Cognition, 82,
27-58. doi:10.1016/S0010-0277(01)00141-X

Waldmann, M. R., & Hagmayer, Y. (2005). Seeing versus doing: Two
modes of accessing causal knowledge. Journal of Experimental Psychol-
0gy Learning, Memory, and Cognition, 31, 216-227. doi:10.1037/0278-
7393.31.2.216

Waldmann, M. R., & Martignon, L. (1998). A Bayesian network model of
causal learning. In M. A. Gernsbacher & S. J. Derry (Eds.), Proceedings
of the Twentieth Annual Conference of the Cognitive Science Society
(pp- 1102-1107). Mahwah, NJ: Erlbaum.

Walsh, C. R., & Sloman, S. A. (2004). Revising causal beliefs. In K.
Forbus, D. Gentner, & T. Regier (Eds.), Proceedings of the 26th Annual
Conference of the Cognitive Science Society (pp. 1423—1427). Mahwah,
NJ: Erlbaum.

Walsh, C. R., & Sloman, S. A. (2007). Updating beliefs with causal
models: Violations of screening off. In M. A. Gluck, J. R. Anderson, &
S. M. Kosslyn (Eds.), Memory and mind: A festschrift for Gordon H.
Bower (345-358). New York, NY: Erlbaum.

Winkler, R. L., & Murphy, A. H. (1973). Experiments in the laboratory and
the real world. Organizational Behavior and Human Performance, 10,
252-270. doi:10.1016/0030-5073(73)90017-2

Woodward, J. (2003). Making things happen: A theory of causal explana-
tion. New York, NY: Oxford University Press.



This document is copyrighted by the American Psychological Association or one of its allied publishers.
This article is intended solely for the personal use of the individual user and is not to be disseminated broadly.

REASONING ABOUT CAUSAL RELATIONSHIPS 31

Yeung, S., & Griffiths, T. L. (2011). Estimating human priors on causal
strength. In L. Carlson, C. H6lscher, & T. F. Shipley (Eds.), Proceedings
of the 33rd Annual Conference of the Cognitive Science Society (pp.
1709-1714). Austin, TX: Cognitive Science Society.

Yuille, A. L., & Lu, H. (2008). The noisy-logical distribution and its
application to causal inference. In J. C. Platt, D. Koller, Y. Singer, & S.
Roweis (Eds.), Advances in neural information processing systems (Vol.
20, pp. 1673-1680). Cambridge, MA: MIT Press.

Zacks, R. T., & Hasher, L. (2002). Frequency processing: A twenty-five

year perspective. In P. Sedlmeier & T. Betsch (Eds.), Etc.: Frequency
processing and cognition (pp. 21-36). New York, NY: Oxford Univer-
sity Press. doi:10.1093/acprof:0s0/9780198508632.003.0002

Received March 18, 2012
Revision received December 14, 2012
Accepted December 23, 2012 =



